1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
2 years ago
10

A total of 875 J of work was done when a force of 175 N was exerted on a box to move it. How far was the box moved

Physics
1 answer:
Vladimir [108]2 years ago
3 0
Work = Force times Distance
W = Fd

Given W = 750J, F = 125N;

750 = 125d

Solving for d:
d = 750/125
d = 6

The box moved a distance of 6 meters.
You might be interested in
Using the periodic table, choose the more reactive metal. Al or Mg
ziro4ka [17]
Aluminum, and magnesium are metals. For metals, reactivity decreases as you go from left to right across the periodic table. Atomic number of Al is 13 and of Mg is 12. Hence the least reactive of these two is therefore aluminum.

Magnesium is "HIGHLY FLAMMABLE" carefully take a small piece and hit it with a torch. If its Magnesium it will "Caution, very, quickly burn.
Aluminum will not react to simple flame, it will only melt with enough direct heat.


Magnesium
==========
Atomic Number: 12
Atomic Symbol: Mg
Atomic Weight: 24.305
Electron Configuration: 2-8-2


Aluminum
========
Atomic Number: 13
Atomic Symbol: Al
Atomic Weight: 26.9815
Electron Configuration: 2-8-3

Hope this helps some. Any questions please feel free to ask. Thank you
6 0
3 years ago
Read 2 more answers
Two objects of masses m1 = 0.56 kg and m2 = 0.88 kg are placed on a horizontal
ziro4ka [17]

Explanation:

Stern et al. (1999) and Stern (2000), define this variable as those general visions about the world, reflected in the beliefs that people express about their relationship with the environment and nature.हेलो फ्रेंड्स मारो किसी को इनबॉक्स कैसे करें

3 0
3 years ago
What is the kinetic energy of a 1.40 kg discus with a speed of 22.5 m/s?
Oksana_A [137]
Kinetic energy = (1/2) (mass) (speed)²

                         = (1/2) (1.4 kg) (22.5 m/s)²

                         =    (0.7 kg)  (506.25 m²/s² )

                         =          354.375  kg-m²/s²  =  354.375 joules .

This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s.  In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin. 
8 0
3 years ago
A cross-country skier slides horizontally along the snow and comes to rest after sliding a distance of 11 m. If the coefficient
Basile [38]

Answer:

v_o = 4.54 m/s  

Explanation:

<u>Knowns  </u>

From equation, the work done on an object by a constant force F is given by:  

W = (F cos Ф)S                                   (1)  

Where S is the displacement and Ф is the angle between the force and the displacement.  

From equation, the kinetic energy of an object of mass m moving with velocity v is given by:  

K.E=1/2m*v^2                                       (2)

From The work- energy theorem , the net work done W on an object equals the difference between the initial and the find kinetic energy of that object:  

W = K.E_f-K.E_o                                 (3)

<u>Given </u>

The displacement that the sled undergoes before coming to rest is s = 11.0 m and the coefficient of the kinetic friction between the sled and the snow is μ_k = 0.020  

<u>Calculations</u>

We know that the kinetic friction force is given by:

f_k=μ_k*N

And we can get the normal force N by applying Newton's second law to the sled along the vertical direction, where there is no acceleration along this direction, so we get:  

∑F_y=N-mg

     N=mg

Thus, the kinetic friction force is:  

f_k = μ_k*N  

Since the friction force is always acting in the opposite direction to the motion, the angle between the force and the displacement is Ф = 180°.  

Now, we substitute f_k and Ф into equation (1), so we get the work done by the friction force:  

W_f=(f_k*cos(180) s

      =-μ_k*mg*s

Since the sled eventually comes to rest, K.E_f= 0 So, from equation (3), the net work done on the sled is:  

W= -K.E_o    

Since the kinetic friction force is the only force acting on the sled, so the net work on the sled is that of the kinetic friction force  

W_f= -K.E_o  

From equation (2), the work done by the friction force in terms of the initial speed is:  

W_f=-1/2m*v^2  

Now, we substitute for W_f= -μ_k*mg*s, and solving for v_o so we get:  

-μ_k*mg*s = -1/2m*v^2  

v_o = √ 2μ_kg*s

Finally, we plug our values for s and μ_k, so we get:  

v_o = √2 x (0.020) x (9.8 m/s^2) x (11.0 m) = 4.54 m/s  

v_o = 4.54 m/s  

6 0
3 years ago
Read 2 more answers
Suppose our experimenter repeats his experiment on a planet more massive than Earth, where the acceleration due to gravity is g
Ne4ueva [31]

Answer:

C

Explanation:

- Let acceleration due to gravity @ massive planet be a = 30 m/s^2

- Let acceleration due to gravity @ earth be g = 30 m/s^2

Solution:

- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:

                                 t = v / a

                                 t = v / 30

- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:

                                 t = v / g

                                 t = v / 9.81

- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C

7 0
3 years ago
Other questions:
  • Bode's Law: correctly predicted the location of Jupiter, uses a number sequence to determine planetary distances, incorrectly pr
    7·1 answer
  • Wo baseballs are fired into a pile of hay. If one has twice the speed of the other, how much farther does the faster baseball pe
    13·1 answer
  • Third-largest ocean?
    11·2 answers
  • A dinosaur and a mammoth elephant are walking away from each other in Jurassic Park When the mammoth is at a distance that is tw
    13·1 answer
  • In what order do the effort, fulcrum, and resistance appear on a second class lever?
    6·1 answer
  • How would you classify the wave?
    6·2 answers
  • The ratio of the wavelength of AM radio waves traveling in a vacuum to the wavelength of FM radio waves traveling in a vacuum is
    15·1 answer
  • If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ra
    5·1 answer
  • ? Why might the expejiment need to be repeated when the hypothesis
    14·1 answer
  • Who sailed the Atlantic from France to explore​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!