1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
7

Mr. Covault gave his students an assignment to design and conduct experiments that would allow them to find the relationship bet

ween force, mass, and acceleration. Some students decided to use a setup like the one below:
The applied force in this setup is equal to the weight of the item attached to the end of the pulley. One student tested the acceleration due to this force on a wooden block (as shown above); another student used a wheeled cart instead of a wooden block.

Mr. Covault's other students decided to simply drop objects. The force in that case is the weight of the object.

All the students measured the time it took each object, starting from rest, to move a certain distance. They used the time and distance to calculate the average acceleration.

Four students' results are shown below. A successful experiment should eliminate all forces acting on the object except the force being investigated. The experiment should confirm Newton's second law:



One newton (N) is 1 kg·m/s2.

Which of the following students had a well designed and conducted experiment?

Student Mass
(kg) Force
(N) Measured
Acceleration
(m/s2)
Kira 0.21 0.098 0.0047
Sophie 0.11 0.098 0.88
Jacques 0.050 0.49 4.9
Chase 0.50 4.9 8.9
Physics
1 answer:
zhenek [66]3 years ago
7 0

Answer:

Sophie

Explanation:

Only Sophie's results supported Newton's second law. The other students' measured accelerations were significantly lower than expected. This could indicate that their experimental designs had not sufficiently eliminated drag forces.

F=ma         Rearranging when solving for acceleration gives:  a=F/m

You might be interested in
An electron (restricted to one dimension) is trapped between two rigid walls 1.40 nm apart. The electron's energy is approximate
Bumek [7]

Answer:

a)    n = 9.9       b)      E₁₀ = 19.25 eV

Explanation:

Solving the Scrodinger equation for the electronegative box we get

         Eₙ = (h² / 8m L²2) n²

where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number

 In this case En = 19 eV let us reduce to the SI system

          En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J

          n = √ (In 8 m L² / h²)

let's calculate

          n = √ (8  9.1 10⁻³¹ (1.4 10⁻⁹)²  30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²

          n = √ (98)            n = 9.9

since n must be an integer, we approximate them to 10

b) We substitute for the calculation of energy

        In = (h² / 8mL2² n²

        In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹  (1.4 10⁻⁹)² 10²

        E₁₀ = 3.08 10⁻¹⁸ J

we reduce eV

      E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)

      E₁₀ = 1.925 101 eV

      E₁₀ = 19.25 eV

the result with significant figures is

        E₁₀ = 19.25 eV

3 0
3 years ago
A long, straight, cylindrical wire of radius R carries a current uniformly distributed over its cross section.
Mice21 [21]

Answer:

Explanation:

We shall solve this question with the help of Ampere's circuital law.

Ampere's ,law

∫ B dl = μ₀ I , B is magnetic field at distance x from the axis within wire

we shall find magnetic field at distance x . current enclosed in the area of circle of radius x

=  I x π x²  / π R²

= I x²  /  R²

B x 2π x = μ₀  x current enclosed

B x 2π x = μ₀  x  I x²  /  R²

B =  μ₀   I x  / 2π R²

Maximum magnetic B₀ field  will be when x = R

B₀ = μ₀I   / 2π R

Given

B = B₀ / 3

μ₀   I x  / 2π R² = μ₀I   / 2π R x 3

x = R / 3

b ) The largest value of magnetic field is on the surface of wire

B₀ = μ₀I   / 2π R

At distance x outside , let magnetic field be B

Applying Ampere's circuital law

∫ B dl = μ₀ I

B x 2π x = μ₀ I

B = μ₀ I / 2π x

Given B = B₀ / 3

μ₀ I / 2π x = μ₀I   / 2π R x 3

x = 3R .

3 0
3 years ago
If an experiment involves a large volume of liquid a _______ would most likely be used to hold it.
Grace [21]
The answer is d a beacker
3 0
3 years ago
Read 2 more answers
Plz help me !!!!!!!!!!
ivolga24 [154]

Answer:

A. These vibrations can travel through solids, liquids, and gases, but not through <u>empty</u><u> </u><u>space</u>.

3 0
3 years ago
What are some properties of transverse waves?
allsm [11]
They send out waves differently and cannot be heard easily
5 0
3 years ago
Other questions:
  • A car initially traveling at 27.7 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are app
    9·1 answer
  • Thermal convection applies mainly to _________.
    7·2 answers
  • Surface currents are caused by ___
    11·2 answers
  • Which of the following diagrams represent a balanced force
    13·1 answer
  • A 10-kg mass slides down a flat hill that makes an angle of 10° with the horizontal. If friction is negligible, what is the resu
    6·1 answer
  • A red racecar accelrates at a constant rate of 5 m/s2. How much time does it take to increase its speed from 50 m/s to 60 m/s?
    13·1 answer
  • The Earth belongs to the group of rocky planets that orbits between the sun and the asteroid belt. Place these planets in order,
    15·2 answers
  • The temperature of an ideal gas in a sealed 0.1 m3 container is reduced from 430 K to 270 K. The final pressure of the gas is 70
    11·1 answer
  • Which of the following statements about lipids and carbohydrates is true?
    15·1 answer
  • A magnetic field protects earth from the sun’s high-energy particles. What two processes are involved in the formation of earth’
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!