Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
Answer:
Explanation:
We shall solve this question with the help of Ampere's circuital law.
Ampere's ,law
∫ B dl = μ₀ I , B is magnetic field at distance x from the axis within wire
we shall find magnetic field at distance x . current enclosed in the area of circle of radius x
= I x π x² / π R²
= I x² / R²
B x 2π x = μ₀ x current enclosed
B x 2π x = μ₀ x I x² / R²
B = μ₀ I x / 2π R²
Maximum magnetic B₀ field will be when x = R
B₀ = μ₀I / 2π R
Given
B = B₀ / 3
μ₀ I x / 2π R² = μ₀I / 2π R x 3
x = R / 3
b ) The largest value of magnetic field is on the surface of wire
B₀ = μ₀I / 2π R
At distance x outside , let magnetic field be B
Applying Ampere's circuital law
∫ B dl = μ₀ I
B x 2π x = μ₀ I
B = μ₀ I / 2π x
Given B = B₀ / 3
μ₀ I / 2π x = μ₀I / 2π R x 3
x = 3R .
Answer:
A. These vibrations can travel through solids, liquids, and gases, but not through <u>empty</u><u> </u><u>space</u>.
They send out waves differently and cannot be heard easily