Answer:
Titration
Explanation:
The best technique which can be used to determine the number of moles of the HCl in the sample is titration.
The given amount of HCl solution must be titrated with known concentration of the base like NaOH.
The volume of NaOH required must be noted also.
According to the reaction,

At equivalence point
Moles of
= Moles of 
Considering:-
Moles of 
Thus, in this way, moles of HCl can be determined.
Explanation:
<h3 /><h2>
<em><u>H2 </u></em><em><u>+</u></em><em><u> </u></em><em><u>O2 </u></em><em><u>=</u></em><em><u> </u></em><em><u>H2O</u></em></h2>
<h2>
<em><u>Hydrogen</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>Oxygen</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>Water</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em></h2>
<em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em><em><u>(~‾▿‾)~</u></em>
Answer:
All of the statements above are true.
Explanation:
Ice is solid water. Ice consists of an array of water molecules arranged into a crystal lattice. Ice has spaces between the water molecules so it is less dense than liquid water. Ice is about 9% less dense than liquid water. This accounts for the fact that it floats on water.
Ice contains more hydrogen bonds per water molecule when compared to liquid water.
Answer:
B) 2Crº + 6e- --> 2Cr3+
Explanation:
The process of oxidation is where electrons are lost. Thus, out of the 2 ions that change charge(Cr and Cu), we must choose the one where the oxidation number increases(which means electrons are lost). Cr goes from an oxidation number of 0 to an oxidation number of 3+, while Cu goes from an oxidation number of 2+ to 0. Thus, we are looking at the half reaction for Cr. Half reactions never have subtracting electrons, so the answer must be B. I am assuming that last plus should be a -->
Answer:
18.9 moles of MgCl2 = 17.834 kg of MgCl2
Explanation:
The molecular weight of MgCl is 80.0 g/mol . So, to convert the given mole amount to grams, multiply this by this number, which is constant for all compounds with a specific composition (mass fraction).
Considering the original question was in the context of chemistry, I wanted to make it seem formal and more educational too. Hopefully that worked!
EDIT: Came up with some text around what happens inside cells that would have made it better if someone just had an issue converting units, but I doubt my answer will be accepted >.<