Because hydrogen bonds can be formed between the oxygen on one molecule and the hydrogen of another molecule; which are stronger bonds compared to the weaker dipole-dipole intermolecular bonding of ethane
Answer:
The rate of reaction changes by a factor 6.
Explanation:
Given the reaction is first order.
Let us assume the initial concentration of
is
and the initial concentration of
is
.
So, we can write the rate of the reaction as
![R=k[A][B]](https://tex.z-dn.net/?f=R%3Dk%5BA%5D%5BB%5D)
Where,
is the rate of reaction. And
is the rate constant.
Also, the initial concentration of
has been increased by
, and the initial concentration of
was increased by factor
.
So, we have
![R'=k[1.5A][4B]\\R'=6k[A][B]\\R'=6R](https://tex.z-dn.net/?f=R%27%3Dk%5B1.5A%5D%5B4B%5D%5C%5CR%27%3D6k%5BA%5D%5BB%5D%5C%5CR%27%3D6R)
We can see the rate of reaction changes by a factor 6.
The balanced equation says that 2 moles C₂H₆ and 7 moles O₂ react together, i.e. in a ratio of 7:2 or 3.5 moles of O₂ to C₂H₆.
With molar masses 30.07 g/mol (C₂H₆) and 31.998 g/mol (O₂), the given quantities amount to
(19 g C₂H₆) × (1/30.07 mol/g) ≈ 0.63 mol C₂H₆
(115 g O₂) × (1/31.998 mol/g) ≈ 3.59 mol O₂
Now, 0.63/2 ≈ 0.32, and for every 0.32 mol C₂H₆ consumed, the reaction requires 7×0.32 ≈ 2.2 mol O₂. Then in order to consume all of the C₂H₆, the reaction would need 2×2.2 ≈ 4.4 mol O₂, which we don't have.
In other words, we have too much C₂H₆ and not enough O₂, so O₂ is the limiting reactant.
Answer:
b)
Explanation:
hydrogen bond is a form of dipole-dipole interaction but with more unique properties
Answer is (4) - Se.
Among the given choices Se has the highest electronegativity value as 2.4 compared to others. Hence, Se shows <span>greatest attraction for electrons in a chemical bond.
</span>Electronegativity is
a value that tells us how an atom can attract electrons towards itself. <span>If
the electronegativity is high, then the attraction to the electrons is also high.
</span>