Answer:
The correct answer will be option-C
Explanation:
The rhythm of the heartbeat is controlled by the pacemaker of the heart called the sino-atrial node.
The SA node generates action potentials which trigger the contraction and relaxation of the atrium and ventricles. The membrane potential generation initiates by the depolarization of the cell membrane when the L type of Ca⁺² ions opens up and calcium ions enter the cell.
This depolarizes the cell until the potential threshold is reached which lies between the -40 and -30 mV.
Thus, Option-C is the correct answer.
Vitamin b12 is the most popular deficiency at the moment- B12 creates red blood cells which travels oxygen around the body- having B12 deficiency can lead to anaemia.
Pathogens can exist in blood and then can be passed the transfusions
The reduced coenzymes generated by the citric acid cycle donate electrons in a series of reactions called the electron transport chain. The answers are as;
a) 1. NADH and 7. FADH2
b) 6. O2
c) 3. NAD+, 1. H2O, 4. ATP and 8. FAD
Oxygen is the ultimate electron acceptor, and it combines with hydrogen ions to produce H2O. This process occurs at the conclusion of the electron transport process.
ATP molecules, which are carriers of energy, would be the final outcome of the oxidative phosphorylation process.
(a) NADH and FADH2 donate electrons to the electron transport chain.
(b) O2 is the final electron acceptor.
(c) NAD+, H2O, ATP, and FAD are the final products of the electron transport chain and oxidative phosphorylation.
You can also learn about oxidative phosphorylation from the following question:
brainly.com/question/29104155
#SPJ4
Answer:
Carbon is the chemical backbone of life on Earth. Carbon compounds regulate the Earth’s temperature, make up the food that sustains us, and provide energy that fuels our global economy. Carbon moves from one storage reservoir to another through a variety of mechanisms. For example, in the food chain, plants move carbon from the atmosphere into the biosphere through photosynthesis. They use energy from the sun to chemically combine carbon dioxide with hydrogen and oxygen from water to create sugar molecules. Animals that eat plants digest the sugar molecules to get energy for their bodies. Respiration, excretion, and decomposition release the carbon back into the atmosphere or soil, continuing the cycle. The ocean plays a critical role in carbon storage, as it holds about 50 times more carbon than the atmosphere. Two-way carbon exchange can occur quickly between the ocean’s surface waters and the atmosphere, but carbon may be stored for centuries at the deepest ocean depths. Rocks like limestone and fossil fuels like coal and oil are storage reservoirs that contain carbon from plants and animals that lived millions of years ago. When these organisms died, slow geologic processes trapped their carbon and transformed it into these natural resources. Processes such as erosion release this carbon back into the atmosphere very slowly, while volcanic activity can release it very quickly. Burning fossil fuels in cars or power plants is another way this carbon can be released into the atmospheric reservoir quickly.Human activities have a tremendous impact on the carbon cycle. Burning fossil fuels, changing land use, and using limestone to make concrete all transfer significant quantities of carbon into the atmosphere. As a result, the amount of carbon dioxide in the atmosphere is rapidly rising; it is already considerably greater than at any time in the last 800,000 years. The ocean absorbs much of the carbon dioxide that is released from burning fossil fuels. This extra carbon dioxide is lowering the ocean’s pH, through a process called ocean acidification. Ocean acidification interferes with the ability of marine organisms (including corals, Dungeness crabs, and snails) to build their shells and skeletons.