Of course steady state condition occurs in almost any system but time it will occurs varies among system. for this kind of system, conduction, steady state conduction occurs when the temperature change from one point to the point is already constant. steady state is not achieved immediately because the heat travels and material will not be heated at the same way at the starting point.
Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.
Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
Answer:
E = 3456 J
Explanation:
The electrical energy expended in a resistor can be easily calculated by using the following formula:

where,
E = Energy Expended = ?
I = current through 5 ohm resistor = 2.4 A
R = Resistance = 5 ohms
P = Electrical Power = VI
Since,
V = IR (Ohm's Law)
Therefore,
P = (IR)(I) = I²R = (2.4 A)²(5 ohms) = 28.8 Watt
t = time taken = (2 min)(60 s/1 min) = 120 s
Therefore,
E = (28.8 Watt)(120 s)
<u>E = 3456 J</u>