Answer:
105/9
Step-by-step explanation:
180 - 132 = 48 degrees
180 - 48 - 45
= 180 - 93
= 87 degrees
<2 = 180 - 87
= 93 degrees
=> 9x - 12 = 93
=> 9x = 105
=> x = 105/9
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
Answer:
28/3
Step-by-step explanation:
------------------------------------------------------------------------------------------
Equation
------------------------------------------------------------------------------------------
y = -3x - 9
------------------------------------------------------------------------------------------
Option 1
------------------------------------------------------------------------------------------
If I substitute x = -9, I should get y = 0
When x = -9
y = -3 (-9) - 9
= 18 (I did not get 0, wrong)
------------------------------------------------------------------------------------------
Option 2
------------------------------------------------------------------------------------------
If I substitute x = -3, I should get y = 0
y = -3(-3) - 9
y = 9 - 9
y = 0 (Yes, I got 0, correct)
------------------------------------------------------------------------------------------
Option 3
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -3
y = -3 (0) - 9
y = 0 - 9
y = -9 (I did not get -3, wrong)
------------------------------------------------------------------------------------------
Option 4
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -9
y = -3 (0) - 9
y = 0 - 9
y = -9 (Yes, I got -9, correct)
------------------------------------------------------------------------------------------
Answer: (-3, 0) and (0, 9) are ordered pairs of the equation (Answer B, D)
------------------------------------------------------------------------------------------