So to figure out 10% of this would be to remove the 0. that would be six. since 30÷10 is 3, we have to do 6×3. that would be 18, so 30% of 60 is 18
let's notice something, the parabola is a vertical one, so the squared variable is the x, and is opening downwards, meaning the x² will have a negative coefficient.
the distance from the vertex to the directrix/focus is the amount of "p" units, let's see in the graph, the distance from the vertex to the directrix is 2, and since the parabola is opening downwards, "p" is a negative 2, p = -2. The vertex is of course at (0, 2).
![\bf \textit{parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=0\\ k=2\\ p=-2 \end{cases}\implies 4(-2)(y-2)=(x-0)^2\implies -8(y-2)=x^2 \\\\\\ y-2=\cfrac{x^2}{-8}\implies \blacktriangleright y=-\cfrac{1}{8}x^2+2 \blacktriangleleft](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%0A%5C%5C%5C%5C%0A4p%28y-%20k%29%3D%28x-%20h%29%5E2%0A%5Cqquad%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Avertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%0A%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ah%3D0%5C%5C%0Ak%3D2%5C%5C%0Ap%3D-2%0A%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%28y-2%29%3D%28x-0%29%5E2%5Cimplies%20-8%28y-2%29%3Dx%5E2%0A%5C%5C%5C%5C%5C%5C%0Ay-2%3D%5Ccfrac%7Bx%5E2%7D%7B-8%7D%5Cimplies%20%5Cblacktriangleright%20y%3D-%5Ccfrac%7B1%7D%7B8%7Dx%5E2%2B2%20%5Cblacktriangleleft%20)
Answer:
130.6 % just move the decimal place 2 places to the right and add the percentage sign
Step-by-step explanation:
Step-by-step explanation:
Y = -2(x+4)² + 4
= -2[x² + 8x +16] +4
= -2x² -16x -32 +4
= -2x² -16x -28