The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
1 mole = 6.022×10^23 atoms. 1 water molecule = 2 Hydrogen atoms + 1 oxygen atom. So, 1 mole H2O = 1.2044×10^24 hydrogen atoms. Therefore 2 mole H2O will have 2.4088×10^24 hydrogen atoms.
The <span>molar concentration of the crystal violet solution is more concentrated than that of the sodium hydroxide solution. It is because the crystal violet solution has more solute in it compared to the sodium hydroxide.</span>
The concentration of mixed solution = 0.5 M
<h3>
Further explanation
</h3>
Given
0.5 M HCl
0.5 M Ca(OH)₂
Required
The concentration
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V = mixed volume
1 = solution 1
2 = solution 2
Vm = V₁+V₂
Equal volumes⇒V₁=V₂, and Vm = 2V, then equation becomes :
2V.Mm = V(M₁+M₂)
2V.Mm = V(0.5+0.5)
Mm=0.5 M