Steal; Anion
This is the answer because phosphorous is very electronegative.
Answer:
Frequency = 6.16 ×10¹⁴ Hz
λ = 4.87×10² nm
Explanation:
In case of hydrogen atom energy associated with nth state is,
En = -13.6/n²
For n = 2
E₂ = -13.6 / 2²
E₂ = -13.6/4
E₂ = -3.4 ev
Kinetic energy of electron = -E₂ = 3.4 ev
For n = 4
E₄ = -13.6 / 4²
E₄ = -13.6/16
E₄ = -0.85 ev
Kinetic energy of electron = -E₄ = 0.85 ev
Wavelength of radiation emitted:
E = hc/λ = E₄ - E₂
hc/λ = E₄ - E₂
by putting values,
6.63×10⁻³⁴Js × 3×10⁸m/s / λ = -0.85ev - (-3.4ev )
6.63×10⁻³⁴ Js× 3×10⁸m/s / λ = 2.55 ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55ev
λ = 6.63×10⁻³⁴ Js× 3×10⁸m/s /2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 2.55× 1.6×10⁻¹⁹ J
λ = 19.89 ×10⁻²⁶ Jm / 4.08×10⁻¹⁹ J
λ = 4.87×10⁻⁷ m
m to nm:
4.87×10⁻⁷ m ×10⁹nm/1 m
4.87×10² nm
Frequency:
Frequency = speed of electron / wavelength
by putting values,
Frequency = 3×10⁸m/s /4.87×10⁻⁷ m
Frequency = 6.16 ×10¹⁴ s⁻¹
s⁻¹ = Hz
Frequency = 6.16 ×10¹⁴ Hz
A pH scale runs from 1 to 14 with 7 being neutral.
1-6 has base like properties
8-14 has avid line properties
since this solution has a pH scale of 4.... the solution is basic
The equivalency point is at the point of the titration where the amount of titrant added neutralize the solution. When it’s a strong acid strong base titration, the equivalence point will be 7. When it is a weak acid strong base, the equivalence point it more basic (the exact number depends on what acid and base you use). And when it is a strong acid weak base, the equivalence number is more acid (the exact number depends on what acid and base you use). Hope this helps!