By an IUPAC definition, solvation is an interaction of a solute with the solvent, which leads to stabilization of the solute species in the solution. In the solvated state, an ion in a solution is surrounded or complexed by solvent molecules. ... Solvation or dissolution is a kinetic process and is quantified by its rate.
2.03 molecules times 6.022E23 = 1.22E24
Answer:
heat rate= 1281W
length = 15.8m
Explanation:
we have this data to answer this question with
Tmi = 85 degrees
Tmo = 35 degrees
Ts = 25 dgrees
flow rate = 25 degrees
using engine oil property from table a-5
Tm = Tmo - TMi/2 = 333k
u =0.522x10⁻²
k = 0.26
pr = 51.3
cp = 2562 J/kg.k
mcp(Tmo-Tmi) =
0.01 x 2562(35-85)
= 1281 W
we find the change in Tim
= [(35-25)-(85-25)]/ln[(35-25)/(85-25)]
= -50/ln0.167
= -50/-1.78976
= 27.9°c
we finf the required reynold number
4x0.01/πx0.003x0.522x10⁻²
= 0.04/0.00004921
= 812.8
= 813
we find approximate correlation
NuD = hd/k
NuD = 3.66
3.66 = 0.003D/0.26
cross multiply
0.003D = 3.66x0.26
D = 3.66x0.26/0.003
= 317.2
As = 1281/317x27.9
= 0.145
As = πDL
L = As/πD
= 0.145/π0.003
= 0.145/0.009429
L = 15.378
Answer:
1. Percentage by weight = 0.5023 = 50.23 %
2. molar fraction =0.153
Explanation:
We know that
Molar mass of HClO4 = 100.46 g/mol
So the mass of 5 Moles= 5 x 100.46
Mass (m)= 5 x 100.46 = 502.3 g
Lets assume that aqueous solution of HClO4 and the density of solution is equal to density of water.
Given that concentration HClO4 is 5 M it means that it have 5 moles of HClO4 in 1000 ml.
We know that
Mass = density x volume
Mass of 1000 ml solution = 1 x 1000 =1000 ( density = 1 gm/ml)
m'=1000 g
1.
Percentage by weight = 502.3 /1000
Percentage by weight = 0.5023 = 50.23 %
2.
We know that
molar mass of water = 18 g/mol
mass of water in 1000 ml = 1000 - 502.3 g=497.9 g
So moles of water = 497.7 /18 mole
moles of water = 27.65 moles
So molar fraction = 5/(5+27.65)
molar fraction =0.153