1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
2 years ago
14

Identify the property demonstrated

Mathematics
1 answer:
ale4655 [162]2 years ago
8 0

Answer:

  • D. Product of Powers Property

Step-by-step explanation:

  • 4^3 * 4^7 = 4^{3 + 7}

<u>The Product of Powers Property states: </u>

  • <em>when multiplying two exponents with the same base, you can add the exponents and keep the base</em>
You might be interested in
Here someone help me is this correct or no someone reported me saying it was wrong
Neko [114]
-2^{4} = 16

You're right.
8 0
3 years ago
Read 2 more answers
Please help me out with this!
CaHeK987 [17]

third

hope it helps you

7 0
2 years ago
Read 2 more answers
Please Complete the page.
Alexxandr [17]
7. -8/3
8. 4/35
9. -21/50
10. 35/64
11.-25/54
6 0
3 years ago
A circle has the order pairs (-1, 2) (0, 1) (-2, -1) what is the equation . Show your work.
olga55 [171]
We know that:

(x-a)^2+(y-b)^2=r^2

is an equation of a circle.

When we substitute x and y (from the pairs we have), we'll get a system of equations:

\begin{cases}(-1-a)^2+(2-b)^2=r^2\\(0-a)^2+(1-b)^2=r^2\\(-2-a)^2+(-1-b)^2=r^2\end{cases}

and all we have to do is solve it for a, b and r.

There will be:

\begin{cases}(-1-a)^2+(2-b)^2=r^2\\(0-a)^2+(1-b)^2=r^2\\(-2-a)^2+(-1-b)^2=r^2\end{cases}\\\\\\&#10;\begin{cases}1+2a+a^2+4-4b+b^2=r^2\\a^2+1-2b+b^2=r^2\\4+4a+a^2+1+2b+b^2=r^2\end{cases}\\\\\\&#10;\begin{cases}a^2+b^2+2a-4b+5=r^2\\a^2+b^2-2b+1=r^2\\a^2+b^2+4a+2b+5=r^2\end{cases}\\\\\\&#10;

From equations (II) and (III) we have:

\begin{cases}a^2+b^2-2b+1=r^2\\a^2+b^2+4a+2b+5=r^2\end{cases}\\--------------(-)\\\\a^2+b^2-2b+1-a^2-b^2-4a-2b-5=r^2-r^2\\\\-4a-4b-4=0\qquad|:(-4)\\\\\boxed{-a-b-1=0}

and from (I) and (II):

\begin{cases}a^2+b^2+2a-4b+5=r^2\\a^2+b^2-2b+1=r^2\end{cases}\\--------------(-)\\\\a^2+b^2+2a-4b+5-a^2-b^2+2b-1=r^2-r^2\\\\2a-2b+4=0\qquad|:2\\\\\boxed{a-b+2=0}

Now we can easly calculate a and b:

\begin{cases}-a-b-1=0\\a-b+2=0\end{cases}\\--------(+)\\\\-a-b-1+a-b+2=0+0\\\\-2b+1=0\\\\-2b=-1\qquad|:(-2)\\\\\boxed{b=\frac{1}{2}}\\\\\\\\a-b+2=0\\\\\\a-\dfrac{1}{2}+2=0\\\\\\a+\dfrac{3}{2}=0\\\\\\\boxed{a=-\frac{3}{2}}

Finally we calculate r^2:

a^2+b^2-2b+1=r^2\\\\\\\left(-\dfrac{3}{2}\right)^2+\left(\dfrac{1}{2}\right)^2-2\cdot\dfrac{1}{2}+1=r^2\\\\\\\dfrac{9}{4}+\dfrac{1}{4}-1+1=r^2\\\\\\\dfrac{10}{4}=r^2\\\\\\\boxed{r^2=\frac{5}{2}}

And the equation of the circle is:

(x-a)^2+(y-b)^2=r^2\\\\\\\left(x-\left(-\dfrac{3}{2}\right)\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{2}\\\\\\\boxed{\left(x+\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{2}}
7 0
3 years ago
Help me please.. pleaseeeee
Mkey [24]
34lbs=544oz
5lbs>79oz
3 0
3 years ago
Read 2 more answers
Other questions:
  • Consider the system of linear equations. 5x+10y=15 10x+3y=13 To use the linear combination method and addition to eliminate the
    8·2 answers
  • Solve and show work.<br><br> 0.9 (3 - x)
    13·2 answers
  • How do you find slope, y- intercept, slope- intercept form, and point slope form for (-10,-17) (-8,-15.7)
    6·2 answers
  • 7x(2x blank)=42 plz answer fast will mark as branliest!!!
    6·1 answer
  • -3(2x -1) plz help, asap will give brainliest
    14·2 answers
  • Please help it’s in the picture
    11·1 answer
  • Didn’t he lateral area of the cone in terms of pi.
    11·2 answers
  • What is the measure of DBE?
    5·1 answer
  • 100% of my grade plz help
    11·1 answer
  • The area of the trapezoid is 40 square millmeter
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!