Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Answer:
Away from the central sulfur atom.
Explanation:
Answer:
Rb2CO3(aq)+Fe(C2H3O2)2(aq)--> 2Rb(C2H3O2)(aq) + FeCO3(s)
Explanation:
The reaction shown in the answer is the reaction of rubidium carbonate and iron II acetate. Rubidium is far more reducing than Fe II hence it can displace Fe II from its salt as shown.
The reducing property of metals depends on the value of their individual electrode potential values. For rubidium, its standard reduction potential is -2.98 V while that of Fe II is -0.44V. Hence rubidium can displace Fe II from its salt as shown above.
Moles=volume*concentration
=0.1*.83
=.083 Moles of HC2H3O2
Mole ratio between HC2H3O2 and CO2 is 1:1
This means .083 Moles of CO2
Mass =Moles*Rfm of CO2
=.083*(12+16+16)
=3.7grams