900 - 250 = 650
650 / 250 = 13 / 3 = 2.6 = 260%
9514 1404 393
Answer:
y -2 = -2/3(x +4)
Step-by-step explanation:
There are several different forms of the equation for a line. Each is useful in its own way. Here, the line crosses the y-axis at a point between integer values, so using that intercept point could be problematical. That suggests the "point-slope" form of the equation for a line would be a better choice.
That form is ...
y -k = m(x -h) . . . . . . . line with slope m through point (h, k)
__
The two marked points are (-4, 2) and (5, -4). All we need is the slope.
The slope is given by the formula ...
m = (y2 -y1)/(x2 -x1) . . . . . . . . where the given points are (x1, y1) and (x2, y2)
m = (-4 -2)/(5 -(-4)) = -6/9 = -2/3
Using the first point, the equation for the line can now be written as ...
y -2 = -2/3(x -(-4))
y -2 = -2/3(x +4)
It’s the first box goes to the 3rd missing thing and the second goes to the 4th and the 3rd goes to the 1st and 4th goes to the 2nd I think if that makes sense
Answer:
1191.4 ; 34.5
Step-by-step explanation:
Given the data:
29; 37; 38; 40; 58; 67; 68; 69; 76; 86; 87; 95; 96; 96; 99; 106; 112; 127; 145; 150
The sample variance and standard deviation can be obtained thus :
Σ(X - m)² / (n - 1)
Where, m = mean of the sample
n = sample size
The standard deviation equals, sqrt(variance )
Using a calculator:
The variance, σ² ;
Mean = Σx / n = 1681 / 20 = 84.05
(x -m)^2
[(29-84.05)^2 + (37-84.05)^2 + (38-84.05)^2 + (40-84.05)^2 + (58-84.05)^2 + (67-84.05)^2 + (68-84.05)^2 + (69-84.05)^2 + (76-84.05)^2 + (86-84.05)^2 + (87-84.05)^2 + (95-84.05)^2 + (96-84.05)^2 + (96-84.05)^2 + (99-84.05)^2 + (106-84.05)^2 + (112-84.05)^2 + (127-84.05)^2 + (145-84.05)^2 + (150-84.05)^2] / 19
22636.95 / 19
= 1191.4184 = 1191.42
Standard deviation = sqrt( Variance)
Standard deviation = sqrt(1191.4184)
Standard deviation = 34.516929 = 34.52
The number that will be immediately filled before 32754 is 32658
Option E is correct.