Answer:
Parallelograms I, II, and IV
Step-by-step:
Area of parallelograms:
I. A=3*5=15 units squared
II. A=5*3=15 units squared
III. A=4*4=16 units squared
IV. A=5*3=15 units squared
So, parallelograms I, II, and IV have the same area of 15 units squared.
To find c, you must isolate it.
To do this, you must divide both sides by 5/7, since that is being multiplied by c and you must do the inverse to it to cancel it out in order to leave c by itself.
5/7c ÷ 5/7 = c
13/14 ÷ 5/7
To divide fractions, follow these steps:
Step 1- Turn the second fraction, 5/7 in this case, into its reciprocal. This means swapping the places of the numerator and denominator.
5/7 reciprocal = 7/5
Step 2- multiply the original first fraction and reciprocal second fraction.
13/14 • 7/5
13 • 7 = 91
14 • 5 = 70
13/14 ÷ 5/7 = 91/70
Step 3- Simplify if possible.
91/70
Since 70 can go into 90, you can turn this into a mixed number.
1 and 21/70
Now simplify 21/70.
Both can be divided by 7.
21 ÷ 7 = 3
70 ÷ 7 = 10
So simplified, 91/70 equals 1 and 3/10.
As a decimal, this is 1.3.
So the answer is c = 1.3, or 1 and 3/10.
Hope this helps :)
The answer is D. 48.
(3 x 40) + (3 x 8)
120 + 24
144
3 x Y = 144
Divide 144 by 3
144 / 3 = 48.
So the answer is 48.
Hope this helps!!
1) slope is 6 and y-intercept is ( 0,5) y = mx + b, m = 6, b = 5 y = 6x + 5 2)line passes through the points ( 3,6) and ( 6,3 ) First find the slope: m = (3-6)/(6-3) = -3/3 = -1 y = -x + b Plug in one of the given points (x,y) and find b 6 = -3 + b 9 = b <span> y = -x + 9</span> a horizontal line that passes through the point ( -1,7)Horizontal lines have a constant y-value and formaty = c where c is a constant number. y = 7 y=-3x+3x intercept: set y = 0 and solve for x0 = -3x + 33x = 3x = 1x-intercept: (1, 0) y-intercept: set x = 0 and solve for yy = -3(0) + 3y = 3y-intercept: (0,3) y=0,5x-1Is this two equations? The line y=0 has y-intercept at (0,0)The x-intercept is the entire x-axis y=5x-1x -intercept: Set y = 0 and solve for x y-intercept: Set x = 0 and solve for y
Mx(ab-b) without distributive property
mxab-mxb with distributive property