1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
3 years ago
13

A jet flew from Kennedy Airport in New York City to Orlando, Florida, in

Physics
1 answer:
Alchen [17]3 years ago
6 0

Answer:

500km/h

Explanation:

I don't know what units you need the answer in, but if the units were to stay the same, then that's the answer^.

You might be interested in
What are the names of neptunes moons
alexandr402 [8]

Answer:

1. naiad  

2.Thalassa

3 Despina

4 Galatea  

5 Larissa  

6 Hippocamp

7 Proteus ˈ  

8 Triton    

9 Nereid

10 Halimede  

11 Sao

12 Laomedeia

13 Psamathe  

14 Neso

Explanation:

hope this  helped

5 0
3 years ago
A 600-kg car traveling at 30.0 m/s is going around a curve having a radius of 120 m that is banked at an angle of 25.0°. The coe
andrey2020 [161]

Answer:

The magnitude of force is 1593.4N

Explanation:

The sum of the horizontal components of the friction and the normal force will be equal to the centripetal force on the car. This can be represented as

fcostheta + Nsintheta = mv^2/r

Where F = force of friction

Theta = angle of banking

N = normal force

m = mass of car

v = velocity of car

r = radius of curve

The car has no motion in the vertical direction so the sum of forces = 0

The vertical component of the normal force acts upwards whereas the weight of the car and the vertical component friction acts downwards.

Taking the upward direction to be positive,rewrite the equation above to get:

Ncos thetha = mg - fsintheta =0

Ncistheta = mg + fain theta

N = mg/cos theta + sintheta/ costheta

fcostheta +[mg/costheta + ftan theta] sin theta = mv^2/r

Substituting gives:

f = (1/(costheta + tanthetasintheta) + mgtantheta = mv^2/r - mgtantheta)

Substituting given values into the above equation

f = 1/(cos25 + tan 25 )(sin25)[ 600×30/120 - (600×9.81)tan

f = 1593.4N25

4 0
3 years ago
Read 2 more answers
A force of 500 N acts horizontally on a 10,000 g body. What is its horizontal acceleration
Paladinen [302]
200n because it's 2×5=10so maybe try solving the problem like that ok does that help
8 0
3 years ago
An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km fr
mestny [16]

An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black hole at a distance of 120 km from its center. The black hole is 5.00 times the mass of the sun and has a Schwarzschild radius of 15.0 km. The astronaut is positioned inside the spaceship such that one of her 0.030 kg ears is 6.0 cm farther from the black hole than the center of mass of the spacecraft and the other ear is 6.0 cm closer.

What is the tension between her ears?

Would the astronaut find it difficult to keep from being torn apart by the gravitational forces?

Answer:

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

Explanation:

Given that:

Orbital radius of the spacecraft (R) = 120 Km = 120 × 10³ m

Mass of the black hole (m) = 5 \ * (M \ _{sun})

where : M_{sun} = 1.99*10^{33} \ kg

Then; we have:

 m = 5*(1.99*10^{30} \ kg ) \\ = 9.95*10^{30} kg

Schwarzchild radius of the black hole

r - 15.0 km

Mass of each ear m_{ear} = 0.030 \ kg

Farther distance between one ear and the black hole (d) = 6.0 cm

= 0.06 m

Closer distance between the other ear and the black home is (d) 6.0 cm

= 0.6 cm

NOW, If we assume that the tension force should be T; then definitely the two ears will posses the same angular velocity .

The net force on the ear closer to the black hole will be:

\frac{GMm_{ear} }{(R-d)}- T = m_{ear} (R -  d) \omega^2

\frac{GMm_{ear} }{(R-d)^2}- \frac{T}{(R-d)} = m_{ear} \omega^2 \ ----> \ (1)

The net force on the ear farther to the black hole is :

\frac{GMm_{ear} }{(R+d)}- T = m_{ear} (R +  d) \omega^2

\frac{GMm_{ear} }{(R+d)^2}- \frac{T}{(R+d)} = m_{ear} \omega^2 \ ----> \ (2)

Equating equation (1) and (2) & therefore making (T) the subject of the formula; we have:

T = \frac{3GMm_{ear}d}{R^3}

T = \frac{3(6.67*10^{-11}N.m^2/kg^2)(1.95*10^{30}kg)(0.03kg)(0.06m)}{(120*10^3m)^3}

T = 2073.9 N\\T = 2.07 KN

The tension between the ears = 2.07 KN

The astronaut will find it difficult to keep and will eventually be in trouble because the tension is now greater compared to the tension in the human tissues.

3 0
4 years ago
A bike, a truck, and a train—all without passengers, motors, or engines—roll down the same hill. Put the vehicles in order from
Pepsi [2]

Answer: WAIT WHATTTT i have that same test due today and the answer is in explanation

Explanation:

Bike, truck train. we are in the same school i think. Its imma say the incisal JMES Im Lusi i used to help in the library

4 0
3 years ago
Other questions:
  • An astronaut on a strange planet finds that she can jump a maximum horizontal distance of 16.0 m if her initial speed is 3.60 m/
    13·1 answer
  • Ariana is accelerating her car at a rate of 4.6 m/s2 for 10 seconds. Her starting velocity was 0 m/s.
    6·1 answer
  • What kind of stars make up the halo?
    10·2 answers
  • Find the mass of a flying discus that has a net force of 1.05 newtons and accelerates at 3.5 m/s^2
    5·1 answer
  • What force stops a car from sinking into the road surface?
    5·2 answers
  • You walk six blocks east along 12th Street, then three blocks west, then one block east, then six blocks east, then seven blocks
    14·1 answer
  • The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero. (a)
    11·1 answer
  • . A 1.00 kg rock is thrown up into the air from ground level at a speed of 8.00 m/s. The ball travels up
    9·1 answer
  • 9. From this lab, we learn that the electric field and electric potential depend on both, the magnitude of the source charge (q)
    12·1 answer
  • Erwin Schrödinger developed the quantum model of the atom. What scientific knowledge was necessary for Schrödinger’s work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!