Find the intensity of the electromagnetic wave described in each case.
(a) an electromagnetic wave with a wavelength of 645 nm and a peak electric field magnitude of 8.5 V/m.
(b) an electromagnetic wave with an angular frequency of 6.3 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T.
To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4
Explanation:
Unclear question. The clear rendering reads;
"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?
An object can be at rest and still be in motion because the earth is always in motion.
The addition of 24 kJ of energy will allow all of the mercury and lead to change from solid to liquid. The temperature of each substance will also increase.