Answer:
B and D
Step-by-step explanation:
I think this is the answer
Answer:
Part A) For the number of hours less than 5 hours it make more sense to rent a scooter from Rosie's
Part B) For the number of hours greater than 5 hours it make more sense to rent a scooter from Sam's
Part C) Yes, for the number of hours equal to 5 the cost of Sam'scooters is equal to the cost of Rosie's scooters
Part D) The cost is $90
Step-by-step explanation:
Let
x-------> the number of hours (independent variable)
y-----> the total cost of rent scooters (dependent variable)
we know that
Sam's scooters
Rosie's scooters
using a graphing tool
see the attached figure
A. when does it make more sense to rent a scooter from Rosie's? How do you know?
For the number of hours less than 5 hours it make more sense to rent a scooter from Rosie's (see the attached figure) because the cost in less than Sam' scooters
B. when does it make more sense to rent a scooter from Sam's? How do you know?
For the number of hours greater than 5 hours it make more sense to rent a scooter from Sam's (see the attached figure) because the cost in less than Rosie' scooters
C. Is there ever a time where it wouldn't matter which store to choose?
Yes, for the number of hours equal to 5 the cost of Sam'scooters is equal to the cost of Rosie's scooters. The cost is $70 (see the graph)
D. If you were renting a scooter from Rosie's, how much would you pay if you were planning on renting for 7 hours?
Rosie's scooters

For x=7 hours
substitute

The cost is $90
1. 3x^1 + 8 - (2x^2 + 1).....distribute the negative thru the parenthesis
3x^1 + 8 - 2x^2 - 1....now combine like terms
-2x^2 + 3x^1 + 7
2. 5x^2 + 3x - 4 - (x^2 - 6x)...same thing..distribute
5x^2 + 3x - 4 - x^2 + 6x...combine like terms
4x^2 + 9x - 4
ANSWER
My answer is in the photo above
Answer:
- -108.26
- -108.13
- -108.052
- -108.026
- -108
Step-by-step explanation:
A graphing calculator or spreadsheet is useful for making the repeated function evaluations required.
The average velocity on the interval [a,b] will be ...
v avg = (y(b) - y(a))/(b-a)
Here, all the intervals start at a=3, so the average velocity for the given values of t will be ...
v avg = (y(3+t) -y(3))/((3+t) -3) = (y(3+t) -y(3))/t
This can be computed for each of the t-values given. The results are shown in the attached table.
__
We note that the fractional part of the velocity gets smaller in proportion to t getting smaller. We expect it to go to 0 when t goes to 0.
The estimated instantaneous velocity is -108 ft/s.
_____
We can simplify the average velocity equation to ...
v avg = ((48(3+t) -26(t+3)^2) -(48(t+3) -26(3)^2)) / t
= (48t -26(t^2 +6t))/t
= 48 -26t -156
<em> v avg = -108 -26t</em>
Then the average velocity at t=0 is -108.