1) Since you have not provided the equations to select the right one, I am going to explain you the relevant facts that are used to solve this question.
2) The transuranium elements are the chemiical elements with atomic number greater than that of the uranium.
The atomic number of uranium is 92. So, the transuranium elements are the elements with atomic number 93 or greater.
This are some of the transuranium elements:
Neptunio - 93
Plutonium - 94
Americium - 95
Curium - 96
Berkelium - 97
Californium - 98
Einstenium - 99
And so all the known elements (the last one is the 118).
3) In a nuclear reaction the total mass number ( shown as superscript to the left of the symbol) and total atomic number (shown as subscript to the left of the symbol) are conserved.
4) Beta decay is the release of a beta particle, which is an electron (considered massles and with charge - 1). So, the beta decay is represented with the symbol:
0
β, which means 0 mass and charge - 1.
-1
5) This is, then, an example of a β decay equation for one transuranium element:
239 239 0
Np → Pu + β
93 94 -1
As you see 239 = 239 + 0 and 93 = 94 - 1, showing that the total mass number ( shown as superscript to the left of the symbol) and the total atomic number (shown as subscript to the left of the symbol) are conserved.
Lithium forms a +1 ion because it loses one electron, making the ratio of electrons:protons unbalanced by losing one electron. the ratio is now 2e:3p.
Oxygen forms a -2 ion because of a different reason. It gains 2 electrons rather than losing them.
Empirical formula is the simplest ratio of whole numbers of components in a compound
calculating for 100 g of compound
C H O
mass 64.27 g 7.19 g 28.54 g
number of moles 64.27 g / 12 g/mol 7.19 g/1 g/mol 28.54 g / 16 g/mol
= 5.356 mol = 7.19 mol = 1.784 mol
divide by least number of moles
5.356 / 1.784 7.19 / 1.784 1.784 / 1.784
= 3.002 4.03 = 1.000
rounded off to nearest whole number
C - 3
H - 4
O - 1
empirical formula - C₃H₄O
mass of empirical formula = 12 g/mol x 3 + 1 g/mol x 4 + 16 g/mol x 1 = 56 g
molecular mass = 168.19 g/mol
molecular formula is the actual ratio of elements making up the compound
number of empirical units = molar mass of molecule / empirical mass
empirical units = 168.19 g/mol / 56 g = 3.00
there are 3 empirical units making up the molecular formula
molecular formula = 3 x C₃H₄O
molecular formula = C₉H₁₂O₃
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
this is the answer is
Zn<span> + </span>HCl<span> = </span>ZnCl2<span> + </span>H2 <span> </span>