Answer:
87.54 g of H₂O₂
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 1.55×10²⁴ molecules
Mass of H₂O₂ =.?
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole of H₂O₂
Next, we shall determine the mass of 1 mole of H₂O₂. This can be obtained as follow:
1 mole of H₂O₂ = (2×1) + (2×16)
= 2 + 32
= 34 g
Thus,
6.02×10²³ molecules = 34 g of H₂O₂
Finally, we shall determine mass of H₂O₂ that contains 1.55×10²⁴ molecules. This can be obtained as follow:
6.02×10²³ molecules = 34 g of H₂O₂
Therefore,
1.55×10²⁴ molecules
= (1.55×10²⁴ × 34)/6.02×10²³
1.55×10²⁴ molecules = 87.54 g of H₂O₂
Thus, 87.54 g of H₂O₂ contains 1.55×10²⁴ molecules.
At 45.35 c cause of how you multiply the division
Answer:
1.008moles of iodine
Explanation:
Hello,
This question requires us to calculate the theoretical yield of I₂ or number of moles that reacted.
Percent yield = (actual yield / estimated yield) × 100
Actual yield = 1.2moles
Estimated yield = ?
Percentage yield = 84%
84 / 100 = 1.2 / x
Cross multiply and solve for x
100x = 84 × 1.2
100x = 100.8
x = 100.8/100
x = 1.008moles
1.008 moles of I₂ reacted in excess of H₂ to give 1.2 moles of HI
Answer:
Earthquakes are more intense the faster the planet's crust slams together, which explains why the shaking causes so much damage in some of the most populated areas around mountain chains. ... One reason for this connection is that when two plates come together quickly, the area over which an earthquake occurs is larger.Explanation: