Answer:
i think c should be ur answer
<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
Answer:
Mass = 135.66 ×10⁻²¹ g
Explanation:
Given data:
Number of molecules of CuSO₄= 5.119×10²
Mass of CuSO₄= ?
Solution:
The given problem will solve by using Avogadro number.
1 mole contain 6.022×10²³ molecules
5.119×10² molecules ×1 mol / 6.022×10²³ molecules
0.85×10⁻²¹ mol
Mass in grams:
Mass = number of moles × molar mass
Mass = 0.85×10⁻²¹ mol × 159.6 g/mol
Mass = 135.66 ×10⁻²¹ g
Of the three sources listed, geothermal energy
is the least dependent on the weather.
(Once it's installed and running, that is.)