Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

The answer should be <span>balance electrically
</span><span>Chemical reactions that form ions should have a balanced charge. The example of the reaction is HCl. When forming ions, the equation should be:
HCl => </span>

+

In this case, the hydrogen has one plus charge and chlorine has one negative charge. The resultant should be zero, so it's balanced.
Hi there! Let's solve this problem shall we!
⠀Volume = 10g
Mass = 2 mL
In this specific problem, they are asking us to find the <u><em>density </em></u>of the object. So,<u><em> using the information given to us</em></u> (volume and mass), let's solve the problem!
Now, if you remember, D = M ÷ V
So, let's fill in the blanks!
D = Our unknown value
M = 2mL
V = 10g
Here is the filled out formula:
D = M ÷ V
D = 2mL ÷ 10g
D = 5 g/mL
*Make sure you put the units for your final solution!*
Answer:
The war of the currents, sometimes called battle of the currents, was a series of events surrounding the introduction of competing electric power transmission systems in the late 1880s and early 1890s.
Explanation:
Answer:
HA + KOH → KA + H₂O
Explanation:
The unknown solid acid in water can release its proton as this:
HA + H₂O → H₃O⁺ + A⁻
As we have the anion A⁻, when it bonded to the cation K⁺, salt can be generated, so the reaction of HA and KOH must be a neutralization one, where you form water and a salt
HA + KOH → KA + H₂O
It is a neutralization reaction because H⁺ from the acid and OH⁻ from the base can be neutralized as water