Rffffffffffffffffffffffffffffffrrrrrrrrrrrrrrrrrrrrrrfffffffffffffffffffrrrrrrrrrrrrrrrrr
Answer:
350.64g
Explanation:
So first you must know that M is mol/L
Next solve the problem using dimensional analysis
2L NaCl (3 mol/L) = 6 mol NaCl
After you got the number of moles you should look at your periodic table to find the molar mass
I see that it's 58.44g/mol
Use dimensional analysis again!
6 mol (58.44g/mol) = 350.64g
Don't forget to make me brainliest!
n = m/M = 2/18 = 1/9 ~0,1 mol
Answer:
Option-B (Carbon and Silicon)
Explanation:
Among the given pairs only carbon and silicon have the most similar properties. This is because,
Sodium and Magnesium belong to different groups. Sodium present in Group I has one electron in its valence shell and capable of transferring only one electron while, Magnesium present in Group II have two electrons in its valence shell and is capable of donating two electrons. Hence, both show different properties.
Example:
2 Na + Cl₂ → NaCl
Mg + Cl₂ → MgCl₂
As shown in reactions when Sodium and Magnesium are treated with Cl₂ they give a products with different proportions.
Carbon and Silicon show almost same properties because both belong to Group IV hence both are capable of forming four bonds. Also, they share the same property of self linkage in making a long chains.
Argon and Chlorine also belong to two different groups. Argon is present in Group VIII (Noble Gases) and Chlorine is present in Group VII (Halogens). Hence, Argon is an inert specie which is non reactive while Chlorine gives different reaction easily.
Potassium and Calcium belong to different groups. Potassium present in Group I has one electron in its valence shell and capable of transferring only one electron while, Calcium present in Group II have two electrons in its valence shell and is capable of donating two electrons. Hence, both show different properties.
Example:
2 K + Cl₂ → KCl
Ca + Cl₂ → CaCl₂
As shown in reactions when Potassium and Calcium are treated with Cl₂ they give a products with different proportions.
There are several ways to give an object potential energy. One can move the object against the force of gravity to increase. One can also stretch an object out or put pressure on it.