Compute the derivative dy/dx using the power, product, and chain rules. Given
x³ + y³ = 11xy
differentiate both sides with respect to x to get
3x² + 3y² dy/dx = 11y + 11x dy/dx
Solve for dy/dx :
(3y² - 11x) dy/dx = 11y - 3x²
dy/dx = (11y - 3x²)/(3y² - 11x)
The tangent line to the curve is horizontal when the slope dy/dx = 0; this happens when
11y - 3x² = 0
or
y = 3/11 x²
(provided that 3y² - 11x ≠ 0)
Substitute y into into the original equation:
x³ + (3/11 x²)³ = 11x (3/11 x²)
x³ + (3/11)³ x⁶ = 3x³
(3/11)³ x⁶ - 2x³ = 0
x³ ((3/11)³ x³ - 2) = 0
One (actually three) of the solutions is x = 0, which corresponds to the origin (0,0). This leaves us with
(3/11)³ x³ - 2 = 0
(3/11 x)³ - 2 = 0
(3/11 x)³ = 2
3/11 x = ³√2
x = (11•³√2)/3
Solving for y gives
y = 3/11 x²
y = 3/11 ((11•³√2)/3)²
y = (11•³√4)/3
So the only other point where the tangent line is horizontal is ((11•³√2)/3, (11•³√4)/3).
Answer:
0.47311827957
Step-by-step explanation:
44/93= 0.47311827957
hope this helps u
6x - 4 < 8
Add 4 to both sides:
6x < 12
Divide both sides by 6:
x < 2
Answer: x < 2
Answer:
25150
Step-by-step explanation:
First, we have to see that this is an arithmetic sequence... since to get the next element we add 5 to it. (a geometric sequence would be a multiplication, not an addition)
So, we have a, the first term (a = 4), and we have the difference between each term (d = 5), and we want to find the SUM of the first 100 terms.
To do this without spending hours writing them down, we can use this formula:

If we plug in our values, we have:

S = 50 * (8 + 495) = 50 * 503 = 25150
Answer:
X = 6
Step-by-step explanation: