Answer:
-1875
Step-by-step explanation:
An arithmetic sequence has a common difference as a sequence. Here the common differnece is -11.
So our sequence so far looks like,
(57,46,35,24....). We know the last term of the sequence is -207 and we need to find the nth term of that series so we use arithmetic sequence
![a _{1} + (n - 1)d](https://tex.z-dn.net/?f=a%20_%7B1%7D%20%2B%20%28n%20-%201%29d%20%20)
where a1 is the inital value,
d is the common differnece and n is the nth term.
We need to find the nth term so
![57 + (n - 1)( - 11) = - 207](https://tex.z-dn.net/?f=57%20%2B%20%28n%20-%201%29%28%20-%2011%29%20%3D%20%20-%20207)
![(n - 1)( - 11) = - 264](https://tex.z-dn.net/?f=%28n%20-%201%29%28%20-%2011%29%20%3D%20%20-%20264)
![n - 1 = 24](https://tex.z-dn.net/?f=n%20-%201%20%3D%2024)
![n = 25](https://tex.z-dn.net/?f=n%20%3D%2025)
So the 25th term of a arithmetic sequence is last term, now we can use the sum of arithmetic sequence
which is
![\frac{a _{1} + a _{n} }{2} n](https://tex.z-dn.net/?f=%20%5Cfrac%7Ba%20%20_%7B1%7D%20%2B%20a%20_%7Bn%7D%20%20%20%7D%7B2%7D%20n)
![\frac{57 + ( - 207)}{2} (25) =](https://tex.z-dn.net/?f=%20%5Cfrac%7B57%20%2B%20%28%20-%20207%29%7D%7B2%7D%20%2825%29%20%3D%20)
![\frac{ - 150}{2} (25)](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20-%20%20150%7D%7B2%7D%20%2825%29)
![- 75(25) = - 1875](https://tex.z-dn.net/?f=%20-%2075%2825%29%20%3D%20%20-%201875)