Answer:
The greatest common factor would be 12.
Step-by-step explanation:
24: 1, 2, 3, 4, 6, 8, <u><em>12</em></u>, 24
60: 1, 2, 3, 4, 5, 6, 10 , <u><em>12</em></u>, 15, 20, 30, 60
Hope it helps!
Answer:
25.133 units
Step-by-step explanation:
Since the density ρ = r, our mass is
m = ∫∫∫r³sinθdΦdrdθ. We integrate from θ = 0 to π (since it is a hemisphere), Φ = 0 to 2π and r = 0 to 2 and the maximum values of r = 2 in those directions. So
m =∫∫[∫r³sinθdΦ]drdθ
m = ∫[∫2πr³sinθdθ]dr ∫dФ = 2π
m = ∫2πr³∫sinθdθ]dr
m = 2π∫r³dr ∫sinθdθ = 1
m = 2π × 4 ∫r³dr = 4
m = 8π units
m = 25.133 units
We have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.
A=B
Method 1:
We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5
B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º
Answer:
a=7; A=50º
b=7; B=50º
<span>c=9; C=80º
Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º
B=A=50º
A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º
Answer:
</span>a=7; A=50º
b=7; B=50º
<span>c=9; C=80º</span>
Answer:
16.5 ft by 25.5 ft
Step-by-step explanation:
Let w represent the width of the garden in feet. Then w+9 is the garden's length, and w(w+9) represents its area.
The surrounding walkway adds 8 feet to each dimension, so the total area of the garden with the walkway is ...
(w+8)(w+9+8) = w^2 +25w +136
If we subtract the area of the garden itself, then the remaining area is that of the walkway:
(w^2 +25w +136) - (w(w+9)) = 400
16w + 136 = 400 . . .simplify
16w = 264 . . . . . . . . subtract 136
264/16 = w = 16.5 . . . . . width of the garden in feet
w+9 = 25.5 . . . . . . . . . . .length of the garden in feet
A) 500 × (1.015)^t = f(t) <span>
b)
500 </span>× (1.015)^t = 800 divide by 500
(1.015)^t = 1.6 solve for t
t <span>≈</span> 31.57 years
<span>
</span>