Twice as long as little drop...
Since the problem stated that 7/9 of the participants were from Wisconsin, so 2/9 of it were not from Wisconsin. Now out of 7/9 participants, 3/5 of them were 12 years old, so 2/5 of them are not 12 years old. Since we now know the fractions, we'll get the equation 7/9 x 3/5 multiply 7 and 3 then divide it to the product of 9 and 5 to have the answer of 7/15. 7/15 of the participants of the camp in Green Bay is from Wisconsin and are 12 years old.
Answer: 6 sides and 6 vertices
Step-by-step explanation:
A hexagon has 6 six sides and 6 vertices
Answer:
I assume that the function is:

Now let's describe the general transformations that we need to use in this problem.
Reflection across the x-axis:
For a general function f(x), a reflection across the x-axis is written as:
g(x) = -f(x)
Reflection across the y-axis:
For a general function f(x), a reflection across the y-axis is written as:
g(x) = f(-x)
Then a reflection across the y-axis, and then a reflection across the x-axis is just:
g(x) = -(f(-x)) = -f(-x)
In this case, we have:

then:

Now we can graph this, to get the graph you can see below:
Answer:
And rounded up we have that n=385
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
Solution to the problem
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
We can use as an estimator for p
. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=385