George C.
Jul 24, 2018
(
x
+
2
)
(
x
+
6
)
2
=
0
Explanation:
Given:
x
3
+
14
x
2
+
60
x
+
72
=
0
By the rational roots theorem, any rational zeros of the given cubic are expressible in the form
p
q
for integers
p
,
q
with
p
a divisor of the constant term
72
and
q
a divisor of the coefficient
1
of the leading term.
That means that the only possible rational zeros are:
±
1
,
±
2
,
±
3
,
±
4
,
±
6
,
±
8
,
±
9
,
±
12
,
±
18
,
±
24
,
±
36
,
±
72
In addition, note that all of the coefficients are positive and the constant term is non-zero. As a result, any real zero (rational or otherwise) of this cubic must be negative.
So that leaves rational possibilities:
−
1
,
−
2
,
−
3
,
−
4
,
−
6
,
−
8
,
−
9
,
−
12
,
−
18
,
−
24
,
−
36
,
−
72
We find:
(
−
2
)
3
+
14
(
−
2
)
2
+
60
(
−
2
)
+
72
=
−
8
+
56
−
120
+
72
=
0
So
x
=
−
2
is a zero and
(
x
+
2
)
a factor:
x
3
+
14
x
2
+
60
+
72
=
(
x
+
2
)
(
x
2
+
12
x
+
36
)
Without trying any more of our "possible" zeros, we can recognise the remaining quadratic factor as a perfect square trinomial:
x
2
+
12
x
+
36
=
x
2
+
2
(
x
)
(
6
)
+
6
2
=
(
x
+
6
)
2
So the factored form of the given cubic equation can be written:
(
x
+
2
)
(
x
+
6
)
2
=
0
The answer would be 30 since you multiply 5 and 6
Answer:17.3964 males 7.6035 females
Step-by-step explanation:
The first way to calculate the expected uses the marginal percentages. If sex is not related to flavor preference, you would expect the same percentages of males to prefer the same flavors as females. Since overall 20.71% prefer vanilla, you would expect 20.71% of males to prefer vanilla. Now, 20.71% of 84 people is 17.3964, so this is how many males you would expect to prefer vanilla. You would also expect 20.71% of the females to prefer vanilla, which is 17.6035. So you'd expect 17.3964 males and 17.6035 females to prefer vanilla.
180 is the answer 3(30+18+12) distributive property gives you 90+54+36 which equals 180 <span />