The equation of a line in the slope intercept form is expressed as
y = mx + c
Where
m represents slope
c represents y intercept
The equation of the given line is expressed as
3x - 6y = 30
Rearranging it so that it will look like the slope intercept form, it becomes
6y = 3x - 30
Dividing both sides by 6, it becomes
6y/6 = 3x/6 - 30/6
y = x/2 - 5
Looking at the equation, slope, m = 1/2
If two lines are parallel, it means that they have equal slope. This means that the slope of the line parallel to the given line is 1/2
To determine the y intercept, c of the line passing through the point (4, - 9), we would substitute
x = 4, y = - 9 and m = 1/2 into the slope intercept equation. It becomes
- 9 = 1/2 * 4 + c
- 9 = 2 + c
c = - 9 - 2
c = - 11
By substtuting m = 1/2 and c = - 11 into the slope intercept equation, the equation of the line would be
y = x/2 - 11
Ans: (6,-13)
Rationale:
Simply take your pre-image (point before applying transformation) of point B (4,-5) and apply the transformation to each point. Therefore, (x,y) = (4+2,-5-8) = (6,-13)
Answer:
0.3907
Step-by-step explanation:
We are given that 36% of adults questioned reported that their health was excellent.
Probability of good health = 0.36
Among 11 adults randomly selected from this area, only 3 reported that their health was excellent.
Now we are supposed to find the probability that when 11 adults are randomly selected, 3 or fewer are in excellent health.
i.e. 
Formula :
p is the probability of success i.e. p = 0.36
q = probability of failure = 1- 0.36 = 0.64
n = 11
So, 



Hence the probability that when 11 adults are randomly selected, 3 or fewer are in excellent health is 0.3907
The answer is plus +3 for slope
Answer:
2 1/3 times as far
Step-by-step explanation:
The ratio of distances is ...
(Monday distance) / (Tuesday distance) = (6 2/9)/(2 2/3)
= (56/9)/(8/3) = (56·3)/(8·9) = 7/3 = 2 1/3
They hiked 2 1/3 times as far on Monday as they did on Tuesday.