1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
2 years ago
9

11. Work backwards to write a quadratic equation that will have solutions of x = 12 and x = 2.

Mathematics
1 answer:
Svetlanka [38]2 years ago
4 0

-------------------------------------------------------------------------------------------------------------

Answer:  \textsf{x}^2\textsf{ - 14x + 24}

-------------------------------------------------------------------------------------------------------------

Given:  \textsf{x = 12 and x = 2}

Find: \textsf{Determine the quadratic equation}

Solution:  In order to determine the quadratic equation we need to move the integers onto the side where x is and then distribute.

<u>Move the integers</u>

  • Solution #1
  • \textsf{x - 12 = 12 - 12}
  • \textsf{x - 12 = 0}

  • Solution #2
  • \textsf{x - 2 = 2 - 2}
  • \textsf{x - 2 = 0}

<u>Create and expression and distribute</u>

  • \textsf{(x - 12)(x - 2) = 0}
  • \textsf{(x * x) + (x * -2) + (-12 * x) + (-12 * -2) = 0}
  • \textsf{x}^2\textsf{ - 2x - 12x + 24 = 0}
  • \textsf{x}^2\textsf{ - 14x + 24 = 0}

Therefore, after completing the steps we were able to determine that the quadratic equation that will have solutions of x = 12 and x = 2 is x^2 - 14x + 24.

You might be interested in
which expression is equivalent to 100 n2 − 1? (10n)2 − (1)2 (10n2)2 − (1)2 (50n)2 − (1)2 (50n2)2 − (1)2
givi [52]
Which expression is equivalent to 100 n2 − 1? (10n)2 − (1)2 (10n2)2 − (1)2 (50n)2 − (1)2 (50n2)2 − (1)2

Regroup:
100n^2-1

=10^2n^2-1
=(10n)^2-1^2

So the correct answer is : 
(10n)^2-1^2

To attempt to factor a polynomial of four or more terms with no common factor, first rewrite it in groups. Each group may possibly be separately factored, and the resulting expression may possibly lend itself to further factorization if a greatest common factor<span> or special form is created.</span>
5 0
3 years ago
Read 2 more answers
Please help will give brainliest please
lyudmila [28]

Answer:

20

Step-by-step explanation:

10 is equal to the side infront of it. 10 +10 = 20

rounding it to the nearest degree will also be 20

8 0
3 years ago
Draw an area model. then solve using the standard algorithm. use arrows to match the partial products from your area model to th
11111nata11111 [884]
The answer to your question of what is 273 times 346 is 94,458
4 0
4 years ago
Read 2 more answers
Reuben invested his savings in two investment funds. The amount he invested in Fund A was 3 times as much as the amount he inves
andreyandreev [35.5K]

Answer:

5/100×1710=20

1710÷20=85.5 dollers

8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • How do I get a square root
    9·2 answers
  • Dividing mixed fractions
    14·1 answer
  • G=-4. Quickly plzzzz. Evaluate expression :)
    8·1 answer
  • Order the values from least to greatest.<br> 6. –15, -21, 19], -20, 25
    13·1 answer
  • Choose the equation of the line that contains the point (1,-1) and (2,-2)
    11·1 answer
  • What is 4+4+6<br> I will make brainiest whoever is first
    12·1 answer
  • If 15x+17*2=227<br><br> what is x
    15·1 answer
  • using data from 2010 and projected to 2020, the population of the United Kingdom (y, in millions) can be approximated by the equ
    5·1 answer
  • Pls help asap 15 POINTS
    10·1 answer
  • Little's law can be applied to any part of the store, such as a particular department or the checkout lines. The store owner det
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!