Question 1:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
Equation: y = 5x - 2
Slope = 5
Slope of parallel line = 5
--------------------------------------------------------------------
Insert slope into the general equation y = mx + c
--------------------------------------------------------------------
y = 5x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
At point (2, -1)
y = 5x + c
-1 = 5(2) + c
c = -1 - 10
c = -11
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 5x + c
y = 5x - 11
--------------------------------------------------------------------
Answer: y = 5x - 11
--------------------------------------------------------------------
Question 2:
--------------------------------------------------------------------
Find Slope
--------------------------------------------------------------------
y = 9x
Slope = 9
Slope of the parallel line = 9
--------------------------------------------------------------------
Insert slope into the equation y = mx + c
--------------------------------------------------------------------
y = 9x + c
--------------------------------------------------------------------
Find y-intercept
--------------------------------------------------------------------
y = 9x + c
At point (0, 5)
5 = 9(0) + c
c = 5
--------------------------------------------------------------------
Insert y-intercept into the equation
--------------------------------------------------------------------
y = 9x + c
y = 9x + 5
--------------------------------------------------------------------
Answer: y = 9x + 5
--------------------------------------------------------------------
It will be 5 cm and use 3.14 to multiply
L = (2,2)
H = (0,3)
G = (1,5)
M = (6,7)
P = (4,8)
C = (7,0)
Answer:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Step-by-step explanation:
Previous concepts
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:
Solution to the problem
For this case we want this probability

And using the probability mass function we got:
The probability that she will not get a hit until her fourth time at bat in a game is 0.103
Answer:
The point 9,50
Step-by-step explanation:
All the other ones are within a reasonable distance of each other.