Answer:
see explanation
Step-by-step explanation:
(5)
Since ∠EBA = 90° then ∠ABD = 90° ( straight angle ) and
∠ABC + ∠CBD = ∠ABD, that is
2x + 3x - 10 = 90, simplifying
5x - 10 = 90 ( add 10 to both sides )
5x = 100 ( divide both sides by 5 )
x = 20, thus
∠ABC = 2x = 2 × 20 = 40°
∠CBD = 3x - 10 = (3 × 20) - 10 = 60 - 10 = 50°
(6)
4x - 18 = 3x + 7 ( vertical angles are congruent )
Subtract 3x from both sides
x - 18 = 7 ( add 18 to both sides )
x = 25
7y = 5y + 28 ( vertical angles are congruent )
Subtract 5y from both sides
2y = 28 ( divide both sides by 2 )
y = 14
F(x) = 2^x; h(x) = x^3 + x + 8
Table
x f(x) = 2^x h(x) = x^3 + x + 8
0 2^0 = 1 0 + 0 + 8 = 8
1 2^1 = 2 1^3 + 1 + 8 = 10
2 2^2 = 4 2^3 + 2 + 8 = 8 + 2 + 8 = 18
3 2^3 = 8 3^3 + 3 + 8 = 27 + 3 + 8 = 38
4 2^2 = 16 4^3 + 4 + 8 = 76
10 2^10 = 1024 10^3 +10 + 8 = 1018
9 2^9 = 512 9^3 + 9 + 8 = 729 + 9 + 8 = 746
Answer: an approximate value of 10
Answer: g > 0
Step-by-step explanation:
Answer:
Only the given table represents a function. Option 1 is correct.
Step-by-step explanation:
A relation is called a function, if there exist a unique value of y for each value of x. It means for each input there exist a unique output.
A function is always a relation but all relations are not function.
In the given table for each value of x, we have unique value of y, therefore the given table represents a function.
In second relation, at x=-2, the values of y are y=10 and y=-7. For single x, there are more than one value of y, therefore the second relation is not a function.
In third relation, at x=6, the values of y are y=-2 and y=1. For single x, there are more than one value of y, therefore the third relation is not a function.