<u>The surface area of the region he will paint is 900 sq.ft.</u>
<u>Step-by-step explanation:</u>
Cubical room measures - 15 ft
Chaz want to paint only the walls of room
Surface of painting region means Lateral surface area (excluding top and bottom)
Lateral surface area of cube =
⇒ 4 * 15 *15
⇒ 900 sq.ft
<u> The surface area of the region he will paint is 900 sq.ft.</u>
Answer:
69.66
Step-by-step explanation:
Answer:
Will's share = 48
Olly's share = 32
Step-by-step explanation:
Will's share : Olly's share = 3:2
Will's share = 3x
Olly's share = 2x
3x + 2x = £ 80 {Combine like terms}
5x = 80 {Divide both sides by 5}
x = 80/5
x = 16
Will's share = 3x = 3*16 = 48
Olly's share = 2x = 2*16 = 32
The answer is -60=60
Simplifying
s2 + -17s + -60 = (s + -5)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (s + -5)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (-5 + s)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (-5 + s)(-12 + s)
Multiply (-5 + s) * (-12 + s)
-60 + -17s + s2 = (-5(-12 + s) + s(-12 + s))
-60 + -17s + s2 = ((-12 * -5 + s * -5) + s(-12 + s))
-60 + -17s + s2 = ((60 + -5s) + s(-12 + s))
-60 + -17s + s2 = (60 + -5s + (-12 * s + s * s))
-60 + -17s + s2 = (60 + -5s + (-12s + s2))
Combine like terms: -5s + -12s = -17s
-60 + -17s + s2 = (60 + -17s + s2)
Add '17s' to each side of the equation.
-60 + -17s + 17s + s2 = 60 + -17s + 17s + s2
Combine like terms: -17s + 17s = 0
-60 + 0 + s2 = 60 + -17s + 17s + s2
-60 + s2 = 60 + -17s + 17s + s2
Combine like terms: -17s + 17s = 0
-60 + s2 = 60 + 0 + s2
-60 + s2 = 60 + s2
Add '-1s2' to each side of the equation.
-60 + s2 + -1s2 = 60 + s2 + -1s2
Combine like terms: s2 + -1s2 = 0
-60 + 0 = 60 + s2 + -1s2
-60 = 60 + s2 + -1s2
Combine like terms: s2 + -1s2 = 0
-60 = 60 + 0
-60 = 60
Solving
-60 = 60