Answer:
Month 8
In this month Company B's plan will pay $64,000 versus $45,000 from Company A.
Step-by-step explanation:
Start by calculating the monthly payments for both plans.
Month - Company A - Company B
1 $10,000 $500
2 $15,000 $1,000
3 $20,000 $2,000
4 $25,000 $4,000
5 $30,000 $8,000
6 $35,000 $16,000
7 $40,000 $32,000
8 $45,000 $64,000
9 $50,000 $128,000
10 $55,000 $256,000
11 $60,000 $512,000
12 $65,000 $1,024,000
13 $70,000 $2,048,000
14 $75,000 $4,096,000
15 $80,000 $8,192,000
16 $85,000 $16,384,000
17 $90,000 $32,768,000
18 $95,000 $65,536,000
19 $100,000 $131,072,000
20 $105,000 $262,144,000
21 $110,000 $524,288,000
22 $115,000 $1,048,576,000
23 $120,000 $2,097,152,000
24 $125,000 $4,194,304,000
Answer:
a) So, this integral is convergent.
b) So, this integral is divergent.
c) So, this integral is divergent.
Step-by-step explanation:
We calculate the next integrals:
a)
![\int_1^{\infty} e^{-2x} dx=\left[-\frac{e^{-2x}}{2}\right]_1^{\infty}\\\\\int_1^{\infty} e^{-2x} dx=-\frac{e^{-\infty}}{2}+\frac{e^{-2}}{2}\\\\\int_1^{\infty} e^{-2x} dx=\frac{e^{-2}}{2}\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cleft%5B-%5Cfrac%7Be%5E%7B-2x%7D%7D%7B2%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D-%5Cfrac%7Be%5E%7B-%5Cinfty%7D%7D%7B2%7D%2B%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C)
So, this integral is convergent.
b)
![\int_1^{2}\frac{dz}{(z-1)^2}=\left[-\frac{1}{z-1}\right]_1^2\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\frac{1}{1-1}+\frac{1}{2-1}\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D%5Cleft%5B-%5Cfrac%7B1%7D%7Bz-1%7D%5Cright%5D_1%5E2%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cfrac%7B1%7D%7B1-1%7D%2B%5Cfrac%7B1%7D%7B2-1%7D%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cinfty%5C%5C)
So, this integral is divergent.
c)
![\int_1^{\infty} \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_1^{\infty}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=2\sqrt{\infty}-2\sqrt{1}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cleft%5B2%5Csqrt%7Bx%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D2%5Csqrt%7B%5Cinfty%7D-2%5Csqrt%7B1%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cinfty%5C%5C)
So, this integral is divergent.
When hav epoins (x1,y1) and (x2,y2)
slope is (y2-y1)/(x2-x1)
(-3,4) and (5,-1)
slope=(-1-4)/(5-(-3))=-5/(5+3)=-5/8
slope=-5/8
Answer:
11 dimes, 17 nickels
Step-by-step explanation:
d + n = 28, put one variable by itself on a side, d = 28 - n
.10d + .05n = 1.95
Sub the first equation into the second
.10(28 - n) + .05n = 1.95
2.8 - .10n + .05n = 1.95
2.8 - .05n = 1.95
-.05n = -0.85
n = 17 nickels
d + 17 = 28
d = 11 11 dimes
Sorry, what exactly is the question?