Freezing point depression depends of the number of particles of the solute in the solution.
1)Pure water have highest freezing point. All other solutions with given solutes will have lower temperatures.
2) The more particles of the solute in the solution the lower freezing point is going to be.
<span>b. 1.0 m NaCl ( dissociates and give 2 mol ions (1 mol Na⁺ and 1 mol Cl⁻))
c. 1.0 m K3PO4 (</span>dissociates and give 4 mol ions (3 mol K⁺ and 1 mol PO4³⁻)<span>
d. 1.0 m CaCl2 (</span>dissociates and give 3 mol ions (1 mol Ca²⁺ and 2 mol Cl⁻))<span>
e. 1.0 m glucose (c6h12o6) (glucose does not dissociate, and solution have
1 mole of particles of the solute(glucose))
The largest number of particles has </span>1.0 m K3PO4 solution, and it is has lowest freezing point . Answer is C.
Kiloliters and megaliters
"Endothermic" is the way among the following choices given that you would <span>classify the following chemical reaction, in terms of energy. The correct option among all the options that are given in the question is the second option or option "B". I hope that the answer has come to your help.</span>
To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.