1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
4 years ago
5

A ball is thrown and the height in feet of the ball is given by 1

Mathematics
1 answer:
MakcuM [25]4 years ago
7 0
H = -16t^2 + 40t + 11

we need to covert this to vertex form 

h = -16(t^2 - 2.5t) + 11

   = -16 [(t - 1.25)^2 - 1.5625] + 11
  
   = -16(t-1.25)^2 + 25 + 11

= -16(t - 1.25)^2 + 36

The answer is  36 feet
You might be interested in
Plz help I put 26 on the points plz help
alex41 [277]

Answer:

do you need help with the L and P???????

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Solve for f: f/5 = -8 F=?
rjkz [21]

Answer:

f = -40 your welcome

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
What is the greatest common factor and least common multiple of 4 and 10?
rusak2 [61]

Answer:

The greatest common factor of 4 and 10 is 2, and the Least common multiple of 4 and 10 is 20

Step-by-step explanation:

3 0
4 years ago
A touchdown it's worth six points. Additionally you score an extra point if you can take a field goal. Is the total number of po
Arisa [49]
No because it would be 7/6 which is not proportional.
6 0
4 years ago
Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}. (a) Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). (Enter your answe
wariber [46]

Answer:

(a)

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

(b)

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

(c)

(A - B) - C = \{a\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

<em></em>

Step-by-step explanation:

Given

A= \{a,b,c\}

B =\{b,c,d\}

C = \{b,c,e\}

Solving (a):

A\ u\ (B\ n\ C)

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ (A\ u\ C)

A\ u\ (B\ n\ C)

B n C means common elements between B and C;

So:

B\ n\ C = \{b,c,d\}\ n\ \{b,c,e\}

B\ n\ C = \{b,c\}

So:

A\ u\ (B\ n\ C) = \{a,b,c\}\ u\ \{b,c\}

u means union (without repetition)

So:

A\ u\ (B\ n\ C) = \{a,b,c\}

Using the illustrations of u and n, we have:

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ C = (\{a,b,c\}\ u\ \{b,c,d\})\ n\ C

Solve the bracket

(A\ u\ B)\ n\ C = (\{a,b,c,d\})\ n\ C

Substitute the value of set C

(A\ u\ B)\ n\ C = \{a,b,c,d\}\ n\ \{b,c,e\}

Apply intersection rule

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C)

In above:

A\ u\ B = \{a,b,c,d\}

Solving A u C, we have:

A\ u\ C = \{a,b,c\}\ u\ \{b,c,e\}

Apply union rule

A\ u\ C = \{b,c\}

So:

(A\ u\ B)\ n\ (A\ u\ C) = \{a,b,c,d\}\ n\ \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

<u>The equal sets</u>

We have:

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

So, the equal sets are:

(A\ u\ B)\ n\ C and (A\ u\ B)\ n\ (A\ u\ C)

They both equal to \{b,c\}

So:

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

Solving (b):

A\ n\ (B\ u\ C)

(A\ n\ B)\ u\ C

(A\ n\ B)\ u\ (A\ n\ C)

So, we have:

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d\}\ u\ \{b,c,e\})

Solve the bracket

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d,e\})

Apply intersection rule

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ \{b,c,e\}

Solve the bracket

(A\ n\ B)\ u\ C = \{b,c\}\ u\ \{b,c,e\}

Apply union rule

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ (\{a,b,c\}\ n\ \{b,c,e\})

Solve each bracket

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}\ u\ \{b,c\}

Apply union rule

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

<u>The equal set</u>

We have:

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

So, the equal sets are:

A\ n\ (B\ u\ C) and (A\ n\ B)\ u\ (A\ n\ C)

They both equal to \{b,c\}

So:

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

Solving (c):

(A - B) - C

A - (B - C)

This illustrates difference.

A - B returns the elements in A and not B

Using that illustration, we have:

(A - B) - C = (\{a,b,c\} - \{b,c,d\}) - \{b,c,e\}

Solve the bracket

(A - B) - C = \{a\} - \{b,c,e\}

(A - B) - C = \{a\}

Similarly:

A - (B - C) = \{a,b,c\} - (\{b,c,d\} - \{b,c,e\})

A - (B - C) = \{a,b,c\} - \{d\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

4 0
3 years ago
Other questions:
  • What is the simple interest paid to $250,3.4,3 years
    6·1 answer
  • 20 PTS. FOR WHO EVER CAN ANSWER THIS QUESTION!!! In first gear, or low gear, an automobile's engine runs about three times as fa
    15·1 answer
  • the area of a rectangular patio is 5 5/8 square yards, and its length is 1 1/2 yards. what is the width in yards
    8·1 answer
  • Can someone help me solve this please due today
    13·2 answers
  • I WILL GIVE BRAINLIEST TO WHOEVER HELPS ME!!
    13·1 answer
  • Which of the following statements represents one of the differences between an experiment and an observational study?
    14·1 answer
  • All even numbers greater than 2 are composite
    11·1 answer
  • What are the coordinates for brainliest
    14·1 answer
  • what is the area of a sector of a circle with a diameter of 12 and a sector bou des by a 90degree arc?
    12·1 answer
  • Jessica and Nancy are members of different video game libraries. Jessica pays a membership fee of $40, and she pays $5 for every
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!