Answer: 
Step-by-step explanation:
<h3>
"Sara plotted the locations of the trees in a park on a coordinate grid. She plotted an oak tree, which was in the middle of the park, at the origin. She plotted a maple tree, which was 10 yards away from the oak tree, at the point (10,0) . Then she plotted a pine tree at the point (-2.4, 5) and an apple tree at the point (7.8, 5) What is the distance, in yards, between the pine tree and the apple tree in the</h3><h3>
park?"</h3>
For this exercise you need to use the following formula, which can be used for calculate the distance between two points:

In this case, you need to find distance, in yards, between the pine tree and the apple tree in the park.
You know that pine tree is located at the point (-2.4, 5) and the apple tree is located at the point (7.8, 5).
So, you can say that:

Knowing these values, you can substitute them into the formula and then evaluate, in order to find the distance, in yards, between the pine tree and the apple tree in the park.
This is:

If the sum of their lengths is 5,520 miles then River D is 2360 and River C is 3160
Answer:
17
Step-by-step explanation:
Properties used:-
All sides of rhombus are equal therefore in the triangles
EQUAL SIDE OPPOSITE TO ANGLES, ANGLES BECOME EQUAL
then we use alternate interior angles
Then we get,
3x-11=x+23
2x=34
x=17
Answer:
Please find attached a drawing of the triangles ΔRST and EFG showing the angles
The angle on ΔEFG that would prove the triangles are similar is ∠F = 25°
Step-by-step explanation:
In order to prove that two triangles are similar, two known angles of each the triangles need to be shown to be equal
Given that triangle ∠R and ∠S of triangle ΔRST are 95° and 25°, respectively, and that ∠E of ΔEFG is given as 90°, then the corresponding angle on ΔEFG to angle ∠S = 25° which is ∠F should also be 25°
Therefore, the angle on ΔEFG that would prove the triangles are similar is ∠F = 25°.