The statement: Mass affects how fast an object falls is true.
Answer:
a)
, b) 
Explanation:
a) The potential energy is:



b) Maximum final speed:

The final speed is:


(1)
Cheetah speed: 
Its position at time t is given by
(1)
Gazelle speed: 
the gazelle starts S0=96.8 m ahead, therefore its position at time t is given by
(2)
The cheetah reaches the gazelle when
. Therefore, equalizing (1) and (2) and solving for t, we find the time the cheetah needs to catch the gazelle:



(2) To solve the problem, we have to calculate the distance that the two animals can cover in t=7.5 s.
Cheetah: 
Gazelle: 
So, the gazelle should be ahead of the cheetah of at least

Answer:
The block will not move.
Explanation:
We'll begin by calculating the frictional force. This can be obtained as follow:
Coefficient of friction (µ) = 0.6
Mass of block (m) = 3 Kg
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (R) = mg = 3 × 10 = 30 N
Frictional force (Fբ) =?
Fբ = µR
Fբ = 0.6 × 30
Fբ = 18 N
From the calculations made above, the frictional force of the block is 18 N. Since the frictional force (i.e 18 N) is bigger than the force applied (i.e 14 N), the block will not move.
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.