Answer:
a)

b)

Explanation:
L = inductance of the Inductor = 3.14 mH = 0.00314 H
C = capacitance of the capacitor = 5.08 x 10⁻⁶ F
a)
f = frequency = 55.7 Hz
Impedance is given as



b)
f = frequency = 11000 Hz
Impedance is given as



The resultant force on the object is
∑ <em>F</em> = 〈0, 8〉 N + 〈6, 0〉 N = 〈6, 8〉 N
which has a magnitude of
<em>F</em> = √((6 N)² + (8 N)²) = √(100 N²) = 10 N
By Newton's second law, the acceleration has magnitude <em>a</em> such that
<em>F</em> = <em>m a</em>
10 N = (2 kg) <em>a</em>
<em>a</em> = (10 N) / (2 kg)
<em>a</em> = 5 m/s²
so the answer is B.
Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)

Answer:

Explanation:
When a spring is compressed, the force exerted by the spring is given by:

where
k is the spring constant
x is the compression of the spring
In this problem we have:
k = 52 N/m is the spring constant
x = 43 cm = 0.43 m is the compression
Therefore, the force exerted by the spring on the dart is

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

where
F = 22.4 N is the force exerted on the dart by the spring
m = 75 g = 0.075 kg is the mass of the dart
a is its acceleration
Solving for a,

Newtons 3.law: Action = Reaction
If a body exerts a force on a rope of 400 N the rope exerts a force on the body of 400N also. So the tension in the rope is 400N. See pictures below.