Answer:
The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is

Explanation:
<u>Net Force
</u>
Forces are represented as vectors since they have magnitude and direction. The diagram of forces is shown in the figure below.
The larger pull F1 is directed 21° west of north and is represented with the blue arrow. The other pull F2 is directed to an unspecified direction (red arrow). Since the resultant Ft (black arrow) is pointed North, the second force must be in the first quadrant. We must find out the magnitude and angle of this force.
Following the diagram, the sum of the vector components in the x-axis of F1 and F2 must be zero:

The sum of the vertical components of F1 and F2 must equal the total force Ft

Solving for
in the first equation






The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is

Answer:
I think its (A)The specific heat of an object explains how easily it changes temperatures.
Explanation:
The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
Answer:
The box will be moving at 0.45m/s. The solution to this problem requires the knowledge and application of newtons second law of motion and the knowledge of linear motion. The vertical component of the force Fp acts vertically upwards against the directio of motion. This causes a constant upward force of 23sin45° to act on the box. Fhe frictional force of 13N also acts vertically upwards and so two forces act upwards against rhe force of gravity resulting un a net force of 0.7N acting kn the box. This corresponds to an acceleration of 0.225m/s². So in w.0s after i start to push v = 0.45m/s.
Explanation: