Answer:
1.3636
Explanation:
Write the expression for the refractive index.
n=c/v
c= speed of light in air
v= speed of light in material
=(3×10^8 m/s)/(2.2×10^8 m/s)
=1.3636
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
Answer:Explanation:gfgfgfgfgfgfgfgfgfg
No, because superconductivity cannot occur if there is resistance
In addition to explaining electrical resistance, equilibrium distance theory also foretells the existence of superconductivity. According to its postulates, electrical resistivity decreases with distance from the equilibrium. There is only superconductivity at zero distance, with no resistance
<h3>What is Superconductivity ?</h3>
The ability of some materials to transmit electric current with virtually little resistance is known as superconductivity.
- This ability has intriguing and maybe beneficial ramifications. Low temperatures are necessary for a material to exhibit superconductor behaviour. H. K. made the initial discovery of superconductivity in 1911.
- Aluminum, magnesium diboride, niobium, copper oxide, yttrium barium, and iron pnictides are a few well-known examples of superconductors.
Learn more about Superconductivity here:
brainly.com/question/17166152
#SPJ4
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J