1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
11

Ayuda :c aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Mathematics
1 answer:
Elan Coil [88]3 years ago
3 0

Answer:

1) 2x^4/343

2) 2x^6/225

3) 2x^12/25

4) 5x^20/16807

Step-by-step explanation:

Hope this helps!

You might be interested in
What is the greatest common factor between 20 and 25
mixas84 [53]

Answer:

5

Step-by-step explanation:

5 0
3 years ago
Jade graphed a system of linear equations. The two lines are right on top of each other, so it appears to be only one line. Whic
kap26 [50]

Answer:

Are we supposed to look at a picture of the graph bec if we are I don’t see it

Step-by-step explanation:

4 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Help me please, Find a, b, and c.
Mama L [17]

Answer:

a = 6*\sqrt{3}

b = 12

c = 6\sqrt{2}

Step-by-step explanation:

Since the triangles are right triangles with 60 and 45 degree angles, their side lengths follow special triangles.

A 45-45-90 right triangle has side lengths 1-1-\sqrt{2}.

A 30-60-90 right triangle has side lengths 1 - \sqrt{3} -2.

Starting with the top triangle which has a 60 degree angle, its side length 6 corresponds to a side length of 1 in the special triangle. It is 6 times bigger so its remaining sides will be 6 times bigger too.

Side a corresponds to side length \sqrt{3}. Therefore, a = 6*\sqrt{3}.

Side b corresponds to side length 2, b = 2*6 = 12.

The bottom triangle has a 45 degree angle, its side length b= 12 corresponds to \sqrt{2}. This means \sqrt{2} was multiplied by 12 = \sqrt{2} * \sqrt{72}. This means that side c is \sqrt{72}=6\sqrt{2}.

3 0
3 years ago
Read 2 more answers
44+39+7=
jenyasd209 [6]
4:6 4’7 4:7 because 4 is into the 15
3 0
3 years ago
Read 2 more answers
Other questions:
  • A certain medicine is given in an amount proportional to a patient's body weight. Suppose a patient weighing 150 pounds requires
    11·1 answer
  • use Taylor's Theorem with integral remainder and the mean-value theorem for integrals to deduce Taylor's Theorem with lagrange r
    5·1 answer
  • Miles ate two hot dogs with buns. Each hot dog has a mass of 45 grams, and each hot dog bun has a mass of 33 grams. How many gra
    5·2 answers
  • This table represents the boiling point of water at different altitudes. Which equation represents water's boiling point (y) bas
    7·2 answers
  • X-y=6 and x=y-2; solve by substitution
    12·2 answers
  • Ms. Fraser's car can go 19.21 miles on .85 gallons of gas.if gas cost $2.17 per gallon, how much will a 3,000 mile trip cost Ms.
    14·1 answer
  • Plz help on these problems.
    11·1 answer
  • According to a certain central bank from 2000 to 2016 the average price of a new home in a certain region increased by 77% to $4
    11·1 answer
  • Please help i dont understand this at all
    9·1 answer
  • 7. Write 300 as a product of prime factors.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!