Answer:
d. 15
Step-by-step explanation:
Putting the values in the shift 2 function
X1 + X2 ≥ 15
where x1= 13, and x2=2
13+12≥ 15
15≥ 15
At least 15 workers must be assigned to the shift 2.
The LP model questions require that the constraints are satisfied.
The constraint for the shift 2 is that the number of workers must be equal or greater than 15
This can be solved using other constraint functions e.g
Putting X4= 0 in
X1 + X4 ≥ 12
gives
X1 ≥ 12
Now Putting the value X1 ≥ 12 in shift 2 constraint
X1 + X2 ≥ 15
12+ 2≥ 15
14 ≥ 15
this does not satisfy the condition so this is wrong.
Now from
X2 + X3 ≥ 16
Putting X3= 14
X2 + 14 ≥ 16
gives
X2 ≥ 2
Putting these in the shift 2
X1 + X2 ≥ 15
13+2 ≥ 15
15 ≥ 15
Which gives the same result as above.
Answer:
V ≈ 113.1ft³
Step-by-step explanation:
the answer is V ≈ 113.1ft³.
I hope this helps you.
The biggest it can be is 110 by 110, and the area would be 2,100 ft.
Hope this helps!
Given:
μ = $3.26 million, averaged salary
σ = $1.2 million, standard deviation
n = 100, sample size.
Let x = random test value
We want to determine P(x>4).
Calculate z-score.
z = (x - μ)/ (σ/√n) = (4 - 3.26)/(1.2/10) = 6.1667
From standard tables,
P(z<6.1667) = 1
The area under the distribution curve = 1.
Therefore
P(z>6.1667) = 1 - P(z<=6.1667) = 1 - 1 = 0
Answer: The probability is 0.
I believe the answer should be 6x+3