1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
14

What is the limit of the infinite series? ∞∑n=1 (3n^5 / 6n^6 + 1)

Mathematics
2 answers:
Sedaia [141]3 years ago
5 0

Answer:

zero

Step-by-step explanation:

L’Hospital’s rule states that for two functions f(x) and g(x), if either:

\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} g(x)=0, \textsf{or}

\ \lim_{x \to \infty} f(x)=\pm \infty \ \textsf{and} \ \lim_{x \to \infty} g(x)\pm \infty

\textsf{Then provided that} \ \lim_{x \to \infty} \dfrac{f(x)}{g(x)} \textsf{ exists, }\lim_{x \to \infty} \dfrac{f(x)}{g(x)}=\lim_{x \to \infty} \dfrac{f'(x)}{g'(x)}  

\lim_{n \to \infty} \dfrac{3n^5}{6n^6+1} \rightarrow \dfrac{\infty}{\infty}

\textsf{Let } f(n)=3n^5  \textsf{  and let } g(n)=6n^6+1

\implies f^{'}(n)=15n^4  \textsf{ and }  g^{'} (n)=36n^5

By L’Hopital’s rule:

\lim_{n \to \infty} \dfrac{3n^5}{6n^6+1}=\lim_{n \to \infty} \dfrac{15n^4}{36n^5}= \lim_{n \to \infty} \dfrac{5}{12n}=0

hoa [83]3 years ago
4 0

Answer:

The limit of the infinite series is equal to zero.

The nth term test is inconclusive ∵ the limit is equal to 0.

By the Comparison Test, this sum diverges.

General Formulas and Concepts:
<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                 \displaystyle \lim_{x \to c} x = c

Series Comparison Tests

  • nth Term Test
  • Direct Comparison Test (DCT)

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1}

<u>Step 2: Find Convergence</u>

  1. [Series] Define:                                                                                            \displaystyle a_n = \frac{3n^5}{6n^6 + 1}
  2. [Series] Set up [nth Term Test]:                                                                   \displaystyle \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1} \rightarrow \lim_{n \to \infty} \frac{3n^5}{6n^6 + 1}
  3. [nth Term Test] Evaluate limit [Limit Rule - VDS]:                                       \displaystyle \lim_{n \to \infty} \frac{3n^5}{6n^6 + 1} = 0
  4. [nth Term Test] Determine Conclusiveness:                                              \displaystyle 0 ,\ \sum^{\infty}_{n = 1} \frac{3n^5}{6n^6 + 1} \ \text{can't be concluded that it converges}

Therefore, the nth term test is inconclusive and another test must be done.

<u>Step 3: Find Convergence Pt. 2</u>

  1. [DCT] Condition 1 [Define comparing series]:                                            \displaystyle \frac{1}{2} \sum^{\infty}_{n = 1} \frac{1}{n}
  2. [DCT] Condition 1 [Test convergence of comparing series]:                   \displaystyle p = 1 ,\ \frac{1}{2} \sum^{\infty}_{n = 1} \frac{1}{n} \ \text{divergent by p-series (harmonic series)}

∴ since the comparison series is divergent, then our original series is also divergent according to the Direct Comparison Test.

---

Learn more about limits: brainly.com/question/26091024

Learn more about Taylor Series: brainly.com/question/23558817

Topic: AP Calculus BC (Calculus I + II)

Unit: Taylor Series

You might be interested in
In a certain manufacturing process, it is known that, on average, 1 in every 100 items is defective.
Rashid [163]

Answer:

A. 0.009899

B. 0.005624

Step-by-step explanation:

Data:

Let the probability that an item is defective = \frac{1}{100}

The probability that the item is not defective = \frac{99}{100}

The probability that the fifth item is defective = \frac{1}{100}* \frac{98}{99}

                                                                            = 0.009899

Probability that one in 5 items is defective  = 0.005624

5 0
4 years ago
F two angles have the same vertex, then they are adjacent.
arlik [135]
Are you asking if it's true or false?
Because it's false, they are not necessarily adjacent.
4 0
3 years ago
Point E has a positive y-coordinate.
Anna71 [15]

Answer: A

Quadrant II

5 0
3 years ago
I am stuck at this question​
Marrrta [24]

Answer:

Step-by-step explanation:

B(2,10); D(6,2)

Midpoint(x1+x2/2, y1+y2/2) = M ( 2+6/2, 10+2/2) = M(8/2, 12/2) = M(4,6)

Rhombus all sides are equal.

AB = BC = CD =AD

distance = √(x2-x1)² + (y2- y1)²

As A lies on x-axis, it y-co ordinate = 0; Let its x-co ordinate be x

A(X,0)

AB = AD

√(2-x)² + (10-0)² = √(6-x)² + (2-0)²

√(2-x)² + (10)² =  √(6-x)² + (2)²

√x² -4x +4 + 100 =  √x²-12x+36 + 4

√x² -4x + 104 =  √x²-12x+40

square both sides,

x² -4x + 104 =  x²-12x+40

x² -4x - x²+ 12x = 40 - 104

             8x = -64

               x = -64/8

               x = -8

A(-8,0)

Let C(a,b)

M is AC midpoint

(-8+a/2, 0 + b/2)  = M(4,6)

     (-8+a/2, b/2)  = M(4,6)

Comparing;  

-8+a/2 = 4          ; b/2 = 6

  -8+a = 4*2       ; b = 6*2

  -8+a = 8          ; b = 12

        a = 8 +8

       a = 16

Hence, C(16,12)

6 0
3 years ago
Find the area of the following composite figure please ​
telo118 [61]

Step-by-step explanation:

answer is in photo above

5 0
3 years ago
Other questions:
  • 3.2.AP-4
    8·1 answer
  • Write the conversion factor for converting meters to centimeters.
    11·2 answers
  • explain why is it important to line up decimals numbers by their place value when you add or subtract them
    12·2 answers
  • What is the remainder when 4x^3+2x^2-18+38/x-3
    14·1 answer
  • URGENT DUE BY 3:30 FOR A HUGE GRADE WILL RATE GOOD:)
    6·1 answer
  • How do you determine whether to use substitution or elimination. give an example of a system that you would solve using each met
    5·1 answer
  • 5/9 times -5 in fraction form
    12·1 answer
  • Find the distance between the pair of points and then round your answer to the nearest tenth.
    14·1 answer
  • EASE HELP The sum of two numbers is 23. One number is four less than twice the other. Find the numbers.​
    10·2 answers
  • Find a degree 3 polynomial that has zeros -2,3 and 6 and in which the coefficient of x^2 is -14. The polynomial is: _____
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!