Answer:
75/99
Step-by-step explanation:
Answer:
Bailey has 20 total bears.
Step-by-step explanation:
She has 20 bears because 25% of 20 is 5. Or 5x4=20
Let X is the random number Erik thinks of, and Y is the random number Nita thinks of.
Both X and Y are in the range from 0 to 20.
<span>X<=20
Y<=20
If the difference between their two numbers is less than 10, then Erik wins.
The difference between the two numbers can be written X-Y, or Y-X depending on which number (X or Y) is greater. But we do not know that. In order not to get negative value, we calculate absolute value of X-Y, written |X-Y| which will give positive value whether X is greater than Y or not.
If |X-Y|<10 Erik wins.
</span><span>If the difference between their two numbers is greater than 10, then Nita wins.
</span><span>If |X-Y|>10 Nita Wins
</span>
Answer:
51
Step-by-step explanation:
Answer:
Keenan's z-score was of 0.61.
Rachel's z-score was of 0.81.
Step-by-step explanation:
Z-score:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Keenan scored 80 points on an exam that had a mean score of 77 points and a standard deviation of 4.9 points.
This means that 
So



Keenan's z-score was of 0.61.
Rachel scored 78 points on an exam that had a mean score of 75 points and a standard deviation of 3.7 points.
This means that
. So



Rachel's z-score was of 0.81.