1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
2 years ago
5

Which is krypton and why?​

Chemistry
1 answer:
ivanzaharov [21]2 years ago
7 0

Answer:

B is krypton

Explanation:

Atomic radius increases when going down a group so Helium is smallest and radon is biggest.

You might be interested in
When you multiply measurements, the answer should only have the same number of significant figures as the measurement with the _
lisov135 [29]

Answer: fewest

Explanation:

3 0
2 years ago
Which statement describes how technology has increased our information on Mars?
Luden [163]

The Curiosity rover found sulfur compounds in rocks and carbon in organic compounds like propane, butene, benzene, toluene and thiophene.

It detected methane, not in soil samples, but in the Martian atmosphere.

It did not discover helium in underground pockets. The hole it can drill is only 5 cm deep.

4 0
3 years ago
Read 2 more answers
Pre-Lab Study Questions / 9
jok3333 [9.3K]

Answer:

See detailed answer with explanation below.

Explanation:

Valence electrons are electrons found on the outermost shell of an atom. They are the electrons in an atom that participate in chemical combination. Recall that the outermost shell of an atom is also referred to as its valence shell. Let us consider an example; if we look at the atom, sodium-11, its electronic configuration is 2,8,1. The last one electron is the valence electron of sodium which is found in its outermost or valence shell.

Positive ions are formed when electrons are lost from the valence shell of an atom. For instance, if the outermost electron in sodium is lost, we now form the sodium ion Na^+ which is a positive ion. Positive ions possess less number of electrons compared to their corresponding atoms.

Negative ions are formed when one or more electrons is added to the valence shell of an atom. A negative ion possesses more electrons than its corresponding atom. For example, chlorine(Cl) contains 17 electrons but the chloride ion (Cl^-) contains 18 electrons.

In molecular compounds, a bond is formed when two electrons are shared between the bonding atoms. Each bonding atom may contribute one of the shared electrons (ordinary covalent bond) or one of the bonding atoms may provide the both shared electrons (coordinate covalent bond). The shared pair may be located at an equidistant position to the nucleus of both atoms. Similarly, the electron may be drawn closer to the nucleus of one atom than the other (polar covalent bond) depending on the electro negativity of the two bonding atoms.

The electrons are shared in order to complete the octet of each atom by so doing, the both bonding atoms now obey the octet rule. For example, two chlorine atoms may come together to form a covalent bond in which each chlorine atom has an octet of electrons on its outermost shell.

4 0
3 years ago
How would a collapsing universe affect light emitted from clusters and superclusters? A. Light would acquire a blueshift. B. Lig
Lady_Fox [76]

Answer:

Choice A: Light would acquire a blueshift.

Explanation:

When a universe collapses, clusters of stars start to move towards each other. There are two ways to explain why light from these stars will acquire a blueshift.

Stars move toward each other; Frequency increases due to Doppler's Effect.

The time period t of a beam of light is the same as the time between two consecutive peaks. If \lambda is the wavelength of the beam, and both the source and observer are static, the time period T will be the same as the time it takes for light travel the distance of one \lambda (at the speed of light in vacuum, c).

\displaystyle t = \frac{\lambda}{c}.

Frequency f is the reciprocal of time period. Therefore

\displaystyle f = \frac{1}{t} = \frac{c}{\lambda}.

Light travels in vacuum at a constant speed. However, in a collapsing universe, the star that emit the light keeps moving towards the observer. Let the distance between the star and the observer be d when the star sent the first peak.

  • Distance from the star when the first peak is sent: d.
  • Time taken for the first peak to arrive: \displaystyle t_1 =\frac{d}{c}.

The star will emit its second peak after a time of. Meanwhile, the distance between the star and the observer keeps decreasing. Let v be the speed at which the star approaches the observer. The star will travel a distance of v\cdot t before sending the second peak.

  • Distance from the star when the second peak is sent: d - v\cdot t.
  • Time taken for the second peak to arrive: \displaystyle t_2 =t + \frac{d - v\cdot t}{c}.

The period of the light is t when emitted from the star. However, the period will appear to be shorter than t for the observer. The time period will appear to be:

\begin{aligned}\displaystyle t' &= t_2 - t_1\\ &= t + \frac{d - v\cdot t}{c} - \frac{d}{c}\\&= t + (\frac{d}{c} - \frac{v\cdot t}{c}) -\frac{d}{c}\\&= t - \frac{v\cdot t}{c} \end{aligned}.

The apparent time period t' is smaller than the initial time period, t. Again, the frequency of a beam of light is inversely proportional to its period. A smaller time period means a higher frequency. Colors at the high-frequency end of the visible spectrum are blue and violet. The color of the beam of light will shift towards the blue end of the spectrum when observed than when emitted. In other words, a collapsing universe will cause a blueshift on light from distant stars.

The Space Fabric Shrinks; Wavelength decreases as the space is compressed.

When the universe collapses, one possibility is that clusters of stars move towards each other. Alternatively, the space fabric might shrink, which will also bring the clusters toward each other.

It takes time for light from a distant cluster to reach an observer on the ground. The space fabric keeps shrinking while the beam of light makes its way through the space. The wavelength of the beam will shrink at the same rate. The wavelength of the beam of light will be shorter by the time the beam arrives at its destination.

Colors at the short-wavelength end of the visible spectrum are blue and violet. Again, the color of the light will shift towards the blue end of the spectrum. The conclusion will be the same: a collapsing universe will cause a blueshift on light from distant stars.

8 0
3 years ago
Which element or elements are unbalanced in this equation?
Stells [14]

Answer:

Only the H is unbalanced.

Explanation:

There are 4 H's and 2 of everything else

7 0
3 years ago
Read 2 more answers
Other questions:
  • The vapor pressure of dichloromethane, c h 2 c l 2 , at 0 ∘ c is 134 mmhg . the normal boiling point of dichloromethane is 40. ∘
    5·1 answer
  • Which scientist was responsible for discovering the neutron? A. Niels Bohr B. Robert Millikan C. James Chadwick D. Ernest Ruther
    8·2 answers
  • What type of elements are generally involved in covalent bonding?
    7·1 answer
  • ) The student collects the H2(g) produced by the reaction and measures its volume over water at 298 K after carefully equalizing
    14·1 answer
  • Which formula represents a molecular compound?<br> (1) HI (3) KCl<br> (2) KI (4) LiCl
    9·2 answers
  • Plz answer quick
    11·2 answers
  • How should particles be represented in a MIXTURE? Is the model precise?
    6·1 answer
  • What does binding energy measure
    6·2 answers
  • Why are polyatomic called radicals
    8·1 answer
  • Use the chart below to answer the question.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!