The number of half -lives that has passed after 105 hours for krypton-79 that has half-life of 35 hours is calculated as below
if 1 half life = 35 hours
what about 105 hours = ? half-lives
= (1 half life x105 hours) /35 hours = 3 half-lives has passed after 105 hours
Answer:

Explanation:
Hello,
In this case, the chemical reaction is:

Thus, we first identify the limiting reactant by computing the yielded moles of water by both of the reactants:

In such a way, since HBr yields less water than cadmium hydroxide, we infer that HBr is the limiting one, therefore, the yielded mass of water are:

Regards.
Answer:
C. 1.3 mol
Explanation:
PV = nRT
where P is absolute pressure,
V is volume,
n is number of moles,
R is universal gas constant,
and T is absolute temperature.
Given:
P = 121.59 kPa
V = 31 L
T = 360 K
R = 8.3145 L kPa / mol / K
Find: n
n = PV / (RT)
n = (121.59 kPa × 31 L) / (8.3145 L kPa / mol / K × 360 K)
n = (3769.29 L kPa) / (2993.22 L kPa / mol)
n = 1.26 mol
Round to two significant figures, there are 1.3 moles of gas.
Complete question is;
When the concentrations of reactant molecules are increased, the rate of reaction increases. The best explanation for this phenomenon is that as the reactant concentration increases,
A)the average kinetic energy of molecules increases.
B)the frequency of molecular collisions increases.
C)the rate constant increases.
D)the activation energy increases.
E)the order of reaction increases.
Answer:
B) The frequency of molecular collisions increases.
Explanation:
When we increase number of reactant molecules, the effective collision between the reactant molecules will form a product which also increases. As a result, the overall rate of the reaction will also increase which means the frequency of the molecular collision will also increase as well.
Thus, the correct answer is Option B