Answer:

Step-by-step explanation:
We want to find the equation of a circle with a center at (7, 2) and a point on the circle at (2, 5).
First, recall that the equation of a circle is given by:

Where (<em>h, k</em>) is the center and <em>r</em> is the radius.
Since our center is at (7, 2), <em>h</em> = 7 and <em>k</em> = 2. Substitute:

Next, the since a point on the circle is (2, 5), <em>y</em> = 5 when <em>x</em> = 2. Substitute:

Solve for <em>r: </em>
<em />
<em />
Simplify. Thus:

Finally, add:

We don't need to take the square root of both sides, as we will have the square it again anyways.
Therefore, our equation is:

It should be D Vietnam I believe and by the way you have this under mathematics.
The answers are C and also D
i. 171
ii. 162
iii. 297
Solution,
n(U)= 630
n(I)= 333
n(T)= 168
i. Let n(I intersection T ) be X

<h3>ii.
n(only I)= n(I) - n(I intersection T)</h3><h3>
= 333 - 171</h3><h3>
= 162</h3>
<h3>
iii. n ( only T)= n( T) - n( I intersection T)</h3><h3>
= 468 - 171</h3><h3>
= 297</h3>
<h3>
Venn- diagram is shown in the attached picture.</h3>
Hope this helps...
Good luck on your assignment...
Volume of water in the tank:

Differentiate both sides with respect to time <em>t</em> :

<em>V</em> changes at a rate of 2000 cc/min (cubic cm per minute); use this to solve for d<em>h</em>/d<em>t</em> :


(The question asks how the height changes at the exact moment the height is 50 cm, but this info is a red herring because the rate of change is constant.)