Answer:
x=18.9
Step-by-step explanation:
tan48=x/17
17tan(48)=x
18.9=x
Answer:
A
Step-by-step explanation:
plug the points into the slope formula
slope = (y2 - y1)/(x2 - x1) Then you get the slope of -0.5
(5 - -1))/(-6-6)
6/-12
-0.5
Plug a point in to the equation of y = -0.5x + b
-1 = -0.5(6) +b
2 = b
First, find the scale factor.
8.4 / 7 = 1.2
9 / 7.5 = 1.2
7.2 / 6 = 1.2
Since both solids are different sizes, the solids aren't congruent.
The size ratio for all the sides are:
8.4:7
9:7.5
7.2:6
Since the scale factor isn't 1:1 this also proves that the solids are NOT congruent.
Since both solids are the same kind of shape and have an identical scale factor, the solids are similar.
Best of Luck!
Answer:
3 foil, 6 latex
Step-by-step explanation:
First, you can put all of these words words into equations. We know there are 162 ballons (18 players)(9 bouquets). So we can put it in the equation
x + y = 162
Since each foil balloon costs $1.92 and each Latex balloon costs $.19 and they all cost $124.20. We can put it in an equation:
.19x + 1.92y = 124.20
You then get the systems of equations:
x + y = 162
.19x + 1.92y = 124.20
solving for the equation, you get x = 54 and y = 108. BUT, you have to be careful. The problem said "How many of each type of balloon did each <em>bouquet</em> include?" So we need to divide both by 18 for the player because each player recieved on bouquet.
Usando un sistema de ecuaciones, se encuentra que
- Cada manzana cuesta $3.
- Cada pera cuesta $1.
-----------------------
- Un sistema de ecuaciones soluciona esta pergunta.
- El custo de una manzana es x.
- El custo de una pera es y.
-----------------------
- <u>Seis manzanas y 8 peras cuestan $26</u>, o sea,

- <u>Cada manzana cuesta el triple de cada pera</u>, o sea,

-----------------------
Primero, encontramos el cuesto de una pera, substituyendo la segunda en la primera ecuación.






Cada pera cuesta $1.
-----------------------
<u>Cada manzana cuesta el triple de cada pera</u>, o sea,
.
Cada manzana cuesta $3.
Se encuentra um problema similar en brainly.com/question/24646137