For this case, what you must do is to see in which scenario the speed of keeping constant during a certain time.
"A person biking on a trail at 1212 miles per hour for 2020 minutes"
We observe that the distance in this case is proportional to the time and the constant of proportionality is the speed.
In other words:
d = v * t
Answer:
the distance traveled is proportional to time in:
"A person biking on a trail at 1212 miles per hour for 2020 minutes"
Answer:
sin θ/2=5√26/26=0.196
Step-by-step explanation:
θ ∈(π,3π/2)
such that
θ/2 ∈(π/2,3π/4)
As a result,
0<sin θ/2<1, and
-1<cos θ/2<0
tan θ/2=sin θ/2/cos θ/2
such that
tan θ/2<0
Let
t=tan θ/2
t<0
By the double angle identity for tangents
2 tan θ/2/1-(tanθ /2)^2 = tanθ
2t/1-t^2=5/12
24t=5 - 5t^2
Solve this quadratic equation for t :
t1=1/5 and
t2= -5
Discard t1 because t is not smaller than 0
Let s= sin θ/2
0<s<1.
By the definition of tangents.
tan θ/2= sin θ/2/ cos θ/2
Apply the Pythagorean Algorithm to express the cosine of θ/2 in terms of s. Note the cos θ/2 is expected to be smaller than zero.
cos θ/2 = -√1-(sin θ/2)^2 = - √1-s^2
Solve for s.
s/-√1-s^2 = -5
s^2=25(1-s^2)
s=√25/26 = 5√26/26
Therefore
sin θ/2=5√26/26=0.196....
I believe that you will use the distance formula d=x2-X1^2+y2-y1^2
Answer:
w-3
Step-by-step explanation:
Do I really have to explain this??