Answer:
TT and Tt genotypes both expressed the tall phenotype because the T is dominant to t. Only the tt genotype expressed the short phenotype.
Explanation:
Hope this helped!
<h2>Let us solve for it </h2>
Explanation:
Magnesium oxide
- It is MgO
- Its molecular mass is : 24 +16=40 g
- When MgO decomposes it forms = 3.54 g of oxygen gas
- when 40 g of MgO decomposes it forms = 16g of oxygen
- or we can say that :
- 16g of oxygen is produced when 40 g of MgO is decomposed .
- 1g of oxygen will be formed from =40/16g of MgO
- 3.54 g of oxygen will be formed = 40/16 x 3.54 =8.85g of MgO
Answer:
Because they lack chlorophyll (a green pigment in plants that helps them trap sunlight, used to manufacture their food through photosynthesis)
Explanation:
Mushrooms are heterotrophs. They are not plants or autotrophs. Mushrooms, just like every living thing that exists need energy in order to live. Only plants, or autotrophs, can directly use energy from the sun (the ultimate energy) to make food. Those organisms that cannot harness the sun's energy are known as heterotrophs. Mushrooms are fungi (belong to kingdom Fungi) and are heterotrophs because they decompose and consume nutrients from the soil. They are not green so they cannot photosynthesis due to lack of chlorophyll.
Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH.
Exponentiate both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
True
Carbon monoxide is a primary pollutant which no odor results from incomplete combustion of fuel. The man sources are gasoline and burning of biomass.
Depending on the source of emission, pollutants can be classified into two groups that is primary and secondary pollutants.
A primary pollutant is emitted in the atmosphere directly from a source. It can be either natural sch as volcanic eruptions, sandstorms or man-made that is due to industrial and vehicle emissions. Examples of primary pollutants are nitrogen oxides, carbon monoxide and particulate matter.
Secondary pollutant is due to interactions between primary and secondary pollutants. These can be chemical or physical interactions. Examples are photo-chemical oxidants and secondary particulate matter.
Therefore, carbon monoxide CO is a primary pollutant.