1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
12

2. Define a linear transformation T:R^2 --> R^2 HRas follows: T(x1, x2) = (x1 - 12,21 + x2). Show that T is invertible and fi

nd T-1:
Mathematics
2 answers:
Semenov [28]3 years ago
8 0

Answer:

T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})

Step-by-step explanation:

Given:

Linear transformation,

T:R^2\rightarrow R^2   defined as

T(x_1,x_2)=(x_1-x_2,x_1+x_2)

To Show: T is invertible

To find: T^{-1}

We know that Standard Basis of R² is \{e_1=(1,0)\:,\:e_2=(0,1)\}

T(e_1)=T(1,0)=(1,1)=1e_1+1e_2

T(e_2)=T(0,1)=(-1,1)=-1e_1+1e_2

So, The matrix representation of T is \begin{bmatrix}1&1\\-1&1\end{bmatrix}^T=\begin{bmatrix}1&-1\\1&1\end{bmatrix}

Now, Determinant of T = 1 - (-1) = 1 + 1 = 2 ≠ 0

⇒ Matrix Representation of T is Invertible matrix.

⇒ T is invertible Linear Transformation.

Hence Proved.

let,

x_1-x_2=u.........................(1)

x_1+x_2=v.........................(2)

Add (1) and (2),

2x_1=u+v

x_1=\frac{u+v}{2}

Putting this value in (1),

\frac{u+v}{2}-x_2=u

x_2=\frac{u+v}{2}-u

x_2=\frac{u+v-2u}{2}

x_2=\frac{v-u}{2}

Now,

T(x_1,x_2)=(x_1-x_2,x_1+x_2)=(u,v)

\implies(x_1,x_2)=T^{-1}(u,v)

\implies T^{-1}(u,v)=(\frac{u+v}{2},\frac{v-u}{2})

\implies T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})

Therefore, T^{-1}(x_1,x_2)=(\frac{x_1+x_2}{2},\frac{x_2-x_1}{2})

yulyashka [42]3 years ago
4 0

Answer with explanation:

T is a Linear transformation such that

 T:R^2\rightarrow R^2\\\\T(x_{1},x_{2})=(x_{1}-12,21+x_{2})

To show that ,T is invertible  that is inverse of a matrix exist ,we need to show that ,T is non singular.

⇒ |T|≠0

→→For a Homogeneous system

  (x_{1}-12,21+x_{2})=(0,0)\\\\x_{1}=12,x_{2}=-21\\\\|\text{Matrix}|=\left[\begin{array}{cc}12&0\\0&-21\end{array}\right]\\\\ |\text{Matrix}|\neq 0

so it is invertible.We have considered equation is of the form

   \rightarrow ax_{1}+bx_{2}+c=0

→→For a Non Homogeneous system

  (x_{1}-12,21+x_{2})=(s,v)\\\\x_{1}=12+s,x_{2}=-21+v\\\\|\text{Matrix}|=\left[\begin{array}{cc}12+s&0\\0&v-21\end{array}\right]\\\\ |\text{Matrix}|=(s+12)\times (v-21)\neq 0

so T, is invertible.

T^{-1}=\frac{Adj.T}{|T|}\\\\T=\left[\begin{array}{cc}s+12&0\\0&v-21\end{array}\right]\\\\Adj.T=\left[\begin{array}{cc}v-21&0\\0&s+12\end{array}\right]\\\\T^{-1}=\frac{\left[\begin{array}{cc}v-21&0\\0&s+12\end{array}\right]}{(s+12)\times (v-21)}\\\\T^{-1}={\left[\begin{array}{cc}\frac{1}{s+12}&0\\0&\frac{1}{v-21}\end{array}\right]}\\\\\text{Replacing s by} x_{1}\\\\ \text{and v by} x_{2}, \text{we get}\\\\T^{-1}={\left[\begin{array}{cc}\frac{1}{x_{1}+12}&0\\0&\frac{1}{x_{2}-21}\end{array}\right]}

 

You might be interested in
Whats is a 3 step problem that can represent the expression 3x + (-5) = 19
GrogVix [38]

Answer:

x=8

Step-by-step explanation:

3x-5=19\\

The first step is to add -5 to both sides:

(3x-5)+5=19+5\\3x=24

The next step is to divide 3 on both sides:

\frac{3x}{3} =\frac{24}{3}

x=8

3 0
2 years ago
find all two digit numbers with the following property:the difference between the number and the number with the same digits in
7nadin3 [17]

answer

71-17=54

82-28=54

93-39=54

60-06=54

Step-by-step explanation:

7 0
3 years ago
Does anyone know the answer?
iragen [17]
-60 djdjjeejjejdjdjdjdjejejejejdjdjjd
8 0
3 years ago
The coordinates of the endpoint of QS are Q(-9,8) and S(9,-4). Point R is on cue as such that QR:RS Is in the ratio 1:2. What ar
marishachu [46]

R(–3, 4)

Step-by-step explanation:

Let Q(-9,8) and S(9,-4) be the given points and let R(x, y) divides QS in the ratio 1:2.

By section formula,

R(x, y)=R\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)

Here, x_{1}=-9, y_{1}=8, \text { and } x_{2}=9, y_{2}=-4 \text { and } m=1, n=2

Substituting this in the section formula

R(x, y)=R\left(\frac{1(9)+2(-9)}{1+2}, \frac{1(-4)+2(8)}{1+2}\right)  

To simplifying the expression, we get

\Rightarrow R(x, y)=R\left(\frac{9-18}{3}, \frac{-4+16}{3}\right)

\Rightarrow R(x, y)=R\left(\frac{-9}{3}, \frac{12}{3}\right)

⇒ R(x,y) = R(–3,4)  

Hence, the coordinates of point R is (–3, 4).

6 0
3 years ago
The sum of the measures of two adjacent angles is 72 degrees. The ratio of the smaller angle to the
Goryan [66]

Answer:

The larger angle is 54°

Step-by-step explanation:

Given

Let the angles be: θ and α where

θ > α

Sum = 72

α : θ = 1 : 3

Required

Determine the larger angle

First, we get the proportion of the larger angle (from the ratio)

The sum of the ratio is 1 + 3 = 4

So, the proportion of the larger angle is ¾.

Its value is then calculated as:.

θ = Proportion * Sum

θ = ¾ * 72°

θ = 3 * 18°

θ = 54°

4 0
2 years ago
Other questions:
  • What are all the common factors of 15 ,45, 90
    10·1 answer
  • Si vendo los 7/4 de lo que no vendí, ¿que parte del total no vendí?
    8·1 answer
  • A store sells cooking oil of two different brands in bottles of the same size. The table below and the equation each show the pr
    12·1 answer
  • If 25% of a number is 100, what is the number?<br> a) 50<br> b) 100<br> c)150<br> d) 200<br> e) 400
    5·1 answer
  • Lan has 30 star stickers to share. she gives 4 stickers to each of her and has 2 stickers.
    8·2 answers
  • Find the zeros (roots) of the following equations.
    12·1 answer
  • There are 5 red cars, 6 blue cars, 8 silver cars, and 4 black cars. What is the ratio of blue cars to total numbers of cars?
    9·1 answer
  • Use the number line below, where RS = 5y + 2, ST = 3y + 9, and RT = 59.
    13·2 answers
  • What is the solution to the equation? √x+3=12
    7·2 answers
  • Select the graph for the solution of the open sentence<br> Ix| = -2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!