Answer:
a)23.2 L
b)68.3kPa
c)7.5 atm
d)60.5L
e)1.67 atm
Explanation:
From Boyle's law:
P1V1=P2V2
P1= 748mmHg
P2=725mmHg
V1= 22.5L
V2??
V2= P1V1/P2= 748×22.5/725= 23.2 L
b)
V1=4.0L
P1= 205×10^3Pa
V2= 12.0L
P2=???
P2= P1V1/V2= 205×10^3×4/12
P2= 68.3×10^3 Pa or 68.3kPa
c)
P1= 1 atm
V1= 196.0L
P2= ??
V2= 26.0L
P2= P1V1/V2=1×196.0/26.0
P2= 7.5 atm
d)
V1= 40.0L
P1= 12.7×10^3Pa
V2=???
P2= 8.4×103Pa
V2= P1V1/P2= 12.7×10^3×40.0/8.4×103
V2=60.5L
e)
V1= 100mL
P1= 1atm
V2= 60mL
P2=???
P2= P1V1/V2= 1×100/60
P2= 1.67 atm
Answer:
V₂ = 22.23 mL
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 25 mL
Initial pressure = 725 mmHg (725/760 =0.954 atm)
Initial temperature = 20 °C (20 +273 = 293 K)
Final pressure = standard = 1 atm
Final temperature = standard = 273.15 K
Final volume = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 0.954 atm × 25 mL × 273.15 K / 293 K × 1 atm
V₂ = 6514.63 mL . atm . K / 293 K . atm
V₂ = 22.23 mL
PH is the concentration of Hydrogen ions (shown as [H+]) in a solution. The scale for pH is 0-14, with 0 being very high acidity and 14 being low acidity (basic). The scale is a logarithmic scale, so this means that each number is 10 times stronger than the number that precedes it.
The pH of the tomato juice is 4, which is more acidic than the black coffee with a pH of 5. Since there is a difference of one number between the two (scale of 1), then this tells us that the concentration of Hydrogen ions in the tomato juice is ten times GREATER than the [H+] of the black coffee.